# zbMATH — the first resource for mathematics

Semilocal convergence for a family of Chebyshev-Halley like iterations under a mild differentiability condition. (English) Zbl 1294.47093
Summary: The semilocal convergence of a family of Chebyshev-Halley like iterations for nonlinear operator equations is studied under the hypothesis that the first derivative satisfies a mild differentiability condition. This condition includes the usual Lipschitz condition and the Hölder condition as special cases. The method employed in the present paper is based on a family of recurrence relations. The R-order of convergence of the methods is also analyzed. Moreover, an application to a nonlinear Hammerstein integral equation of the second kind is provided. Furthermore, two numerical examples are presented to demonstrate the applicability and efficiency of the convergence results.

##### MSC:
 47J25 Iterative procedures involving nonlinear operators 65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
Full Text:
##### References:
 [1] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990) · Zbl 0701.65043 · doi:10.1007/BF02241866 [2] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45, 355–367 (1990) · Zbl 0714.65061 · doi:10.1007/BF02238803 [3] Ezquerro, J.A.: A modification of the Chebyshev method. IMA J. Numer. Anal. 17, 511–525 (1997) · Zbl 0888.65062 · doi:10.1093/imanum/17.4.511 [4] Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22, 519–530 (2002) · Zbl 1028.65061 · doi:10.1093/imanum/22.2.187 [5] Ezquerro, J.A., Hernández, M.A.: On an application of Newton’s method to nonlinear operators with $$\omega$$-conditioned second derivative. BIT Numer. Math. 42, 519–530 (2002) · Zbl 1028.65061 [6] Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005) · Zbl 1079.65064 · doi:10.1016/j.jmaa.2004.08.057 [7] Ezquerro, J.A., Hernández, M.A.: On the R-order of convergence of Newton’s method under mild differentiability conditions. J. Comput. Appl. Math. 197, 53–61 (2006) · Zbl 1106.65048 · doi:10.1016/j.cam.2005.10.023 [8] Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equation of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991) · Zbl 0719.65093 · doi:10.1093/imanum/11.1.21 [9] Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev-Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 55, 113–130 (1997) · Zbl 0893.47043 · doi:10.1017/S0004972700030586 [10] Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998) · Zbl 0933.65063 · doi:10.1016/S0898-1221(98)00168-0 [11] Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon, Oxford (1982) · Zbl 0484.46003 [12] Melman, A.: Geometry and convergence of Euler’s and Halley’s methods. SIAM Rev. 39, 728–735 (1997) · Zbl 0907.65045 · doi:10.1137/S0036144595301140 [13] Potra, F.A.: On Q-order and R-order of convergence. J. Optim. Theory Appl. 63, 415–431 (1989) · Zbl 0663.65049 · doi:10.1007/BF00939805 [14] Wang, X.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20, 123–134 (2000) · Zbl 0942.65057 · doi:10.1093/imanum/20.1.123 [15] Wang, X., Li, C., Lai, M.: A unified convergence theory for Newton-type methods for zeros of nonlinear operators in Banach spaces. BIT Numer. Math. 42, 206–213 (2002) · Zbl 0998.65057 · doi:10.1023/A:1021986506085 [16] Xu, X., Li, C.: Convergence of Newton’s method for systems of equations with constant rank derivatives. J. Comput. Math. 25, 705–718 (2007) · Zbl 1150.49011 [17] Xu, X., Li, C.: Convergence criterion of Newton’s method for singular systems with constant rank derivatives. J. Math. Anal. Appl. 345, 689–701 (2008) · Zbl 1154.65332 · doi:10.1016/j.jmaa.2008.04.009 [18] Yao, Q.: On Halley iteration. Numer. Math. 81, 647–677 (1999) · Zbl 0922.65038 · doi:10.1007/s002110050408 [19] Ye, X., Li, C.: Convergence of the family of the deformed Euler-Hally iterations under the Hölder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006) · Zbl 1100.47057 · doi:10.1016/j.cam.2005.07.019 [20] Ye, X., Li, C., Shen, W.: Convergence of the variants of the Chebyshev-Halley iteration family under the Hölder condition of the first derivative. J. Comput. Appl. Math. 203, 279–288 (2007) · Zbl 1118.65059 · doi:10.1016/j.cam.2006.04.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.