Ling, Yonghui; Xu, Xiubin On the semilocal convergence behavior for Halley’s method. (English) Zbl 06348494 Comput. Optim. Appl. 58, No. 3, 597-618 (2014). MSC: 47J05 65J15 65H10 PDF BibTeX XML Cite \textit{Y. Ling} and \textit{X. Xu}, Comput. Optim. Appl. 58, No. 3, 597--618 (2014; Zbl 06348494) Full Text: DOI
Ling, Yonghui; Xu, Xiubin; Yu, Shaohua Convergence behavior for Newton-Steffensen’s method under \(\gamma\)-condition of second derivative. (English) Zbl 07095233 Abstr. Appl. Anal. 2013, Article ID 682167, 11 p. (2013). MSC: 65 47 PDF BibTeX XML Cite \textit{Y. Ling} et al., Abstr. Appl. Anal. 2013, Article ID 682167, 11 p. (2013; Zbl 07095233) Full Text: DOI
Xu, Xiubin; Ling, Yonghui Semilocal convergence for a family of Chebyshev-Halley like iterations under a mild differentiability condition. (English) Zbl 1294.47093 J. Appl. Math. Comput. 40, No. 1-2, 627-647 (2012). MSC: 47J25 65J15 PDF BibTeX XML Cite \textit{X. Xu} and \textit{Y. Ling}, J. Appl. Math. Comput. 40, No. 1--2, 627--647 (2012; Zbl 1294.47093) Full Text: DOI
Yu, Shaohua; Xu, Xiubin; Li, Jianqiu; Ling, Yonghui Convergence behavior for Newton-Steffensen’s method under Lipschitz condition of second derivative. (English) Zbl 1270.65026 Taiwanese J. Math. 15, No. 6, 2577-2600 (2011). Reviewer: Dian K. Palagachev (Bari) MSC: 65J15 47J05 65H10 PDF BibTeX XML Cite \textit{S. Yu} et al., Taiwanese J. Math. 15, No. 6, 2577--2600 (2011; Zbl 1270.65026) Full Text: DOI Link
Xu, Xiubin; Ling, Yonghui Semilocal convergence for Halley’s method under weak Lipschitz condition. (English) Zbl 1187.65059 Appl. Math. Comput. 215, No. 8, 3057-3067 (2009). Reviewer: Mihai Turinici (Iaşi) MSC: 65J15 47J25 65R20 PDF BibTeX XML Cite \textit{X. Xu} and \textit{Y. Ling}, Appl. Math. Comput. 215, No. 8, 3057--3067 (2009; Zbl 1187.65059) Full Text: DOI
Ling, Y.; Cao, Hua-lin; Sheng, H. Convex-decomposable operators and inclusive algorithms. (English) Zbl 1065.47076 Herzberger, J. (ed.), Inclusion methods for nonlinear problems. With applications in engineering, economics and physics. Proceedings of the international GAMM-workshop, Munich and Oberschleißheim, December 15–18, 2000. Wien: Springer (ISBN 3-211-83852-X/pbk). Comput. Suppl. 16, 165-170 (2003). Reviewer: Keehwan Kim (Kyongsan) MSC: 47J25 PDF BibTeX XML Cite \textit{Y. Ling} et al., in: Inclusion methods for nonlinear problems. With applications in engineering, economics and physics. Proceedings of the international GAMM-workshop, Munich and Oberschleißheim, December 15--18, 2000. Wien: Springer. 165--170 (2003; Zbl 1065.47076)
Ling, Y. The convex-decomposable operator equation and its monotonic inclusive iteration. (English) Zbl 0867.65023 Computing 57, No. 4, 345-356 (1996). Reviewer: Z.Mei (Toowoomba) MSC: 65H10 65J15 47H07 47J25 PDF BibTeX XML Cite \textit{Y. Ling}, Computing 57, No. 4, 345--356 (1996; Zbl 0867.65023) Full Text: DOI