×

Polynomial compactness in Banach spaces. (English) Zbl 0946.46040

Let \(X\) be an infinite-dimensional Banach space over \({\mathbb K}\) \(({\mathbb R}\) or \({\mathbb C})\), \({\mathcal P}{(^N}X)\) be the set of all \(N\)-homogeneous continuous polynomials \(P: X\to {\mathbb K}\) where \(N\in {\mathbb N}\), \({\mathcal P}(X)\) be the union of all sets \({\mathcal P}{(^N}X)\) and \(X_{{\mathcal P}(X)}\) be the set \(X\) endowed with the weakest topology making all \(P\in {\mathcal P}(X)\) continuous.
A characterization of such Banach spaces \(X\) and \(Y\) are given for which
a) \(Z_{{\mathcal P}(Z)}\) (here \(Z = X\times Y\)) is not a topological vector space and
b) \(Z_{{\mathcal P}(Z)}\) (here \(Z \simeq X\times Y\)) has a nonlinear topology.
The notion of polynomial compactness in Banach spases and the \({\mathcal P}\)-Dunford-Pettis property and the \({\mathcal P}^{\leq N}\)-Dunford-Pettis property are introduced and several equivalent conditions for Banach spaces to have these properties are given. It is shown that the sum of two polynomially compact subsets of Banach space \(X\) is again a polynomially compact set if \(X\) has the \({\mathcal P}\)-Dunford-Pettis property and a characterization for a such real Banach space \(X\) is given for which a bounded subset is relatively compact in \(X_{{\mathcal P}(X)}\) if and only if it is separated from zero by all \(P > 0\) in \({{\mathcal P}(X)}\).
Reviewer: Mati Abel (Tartu)

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46J10 Banach algebras of continuous functions, function algebras
46E25 Rings and algebras of continuous, differentiable or analytic functions
46E50 Spaces of differentiable or holomorphic functions on infinite-dimensional spaces
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinite many variables , Proc. Amer. Math. Soc. 90 (1984), 407-411. · Zbl 0536.46015 · doi:10.2307/2044483
[2] R.M. Aron, Y.S. Choi and J.G. Llavona, Estimates by polynomials , · Zbl 0839.46039 · doi:10.1017/S0004972700014957
[3] R.M. Aron, B.J. Cole and T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space , J. Reine Angew. Math. 415 (1991), 51-93. · Zbl 0717.46031
[4] P. Biström, J.A. Jaramillo and M. Lindström, Algebras of real analytic functions ; Homomorphisms and bounding sets , Studia Math. 115 (1) (1995), 23-37. · Zbl 0829.46013
[5] F. Bombal, Operators on vector sequence spaces, Geometric aspects of Banach spaces , London Math. Soc. Lecture Notes Ser., 140 (1989), 94-106. · Zbl 0681.47010
[6] J.K. Brooks and P.W. Lewis, Operators on continuous function spaces and convergence in spaces of operators , Adv. Math. 29 (1978), 157-177. · Zbl 0393.46036 · doi:10.1016/0001-8708(78)90009-9
[7] T.K. Carne, B. Cole and T.W. Gamelin, A uniform algebra of analytic functions on a Banach space , Trans. Amer. Math. Soc. 314 (1989), 639-659. JSTOR: · Zbl 0704.46033 · doi:10.2307/2001402
[8] J.F. Castillo, On weakly-\(p\)-summable sequences in \( \ell_p(X)\) and \(C(K,X)\) ,
[9] J.F. Castillo and F. Sánchez, Dunford-Pettis-like properties of continuous vector function spaces , Rev. Mat. Univ. Complut. Madrid 6 (1993), 43-59. · Zbl 0807.46033
[10] ——–, Weakly-\(p\)-compact, \(p\)-Banach-Saks and super-reflexive Banach spaces , J. Math. Anal. Appl. 185 (1994), 256-261. · Zbl 0878.46009 · doi:10.1006/jmaa.1994.1246
[11] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces , Pitman Monographs Surveys Pure Appl. Math. 64 1993. · Zbl 0782.46019
[12] J. Diestel, Sequences and series in Banach spaces , Graduate Texts in Math. 92 1984. · Zbl 0542.46007
[13] S. Dineen, Holomorphy types on Banach spaces , Studia Math. 39 (1971), 240-288. · Zbl 0235.32013
[14] M. Fabian, D. Preiss, H.M. Whitfield and V.E. Zizler, Separating polynomials on Banach spaces , Quart. J. Math. Oxford 40 (1989), 409-422. · Zbl 0715.46007 · doi:10.1093/qmath/40.4.409
[15] J. Farmer, Polynomial reflexivity in Banach spaces , Israel J. Math. 87 (1994), 257-273. · Zbl 0819.46006 · doi:10.1007/BF02772998
[16] J. Farmer and W.B. Johnson, Polynomial Schur and polynomial Dunford-Pettis properties , Contem. Math. 144 (1993), 95-105. · Zbl 0822.46013
[17] K. Floret, Weakly compact set , Lecture Notes in Math. 801 1980. · Zbl 0437.46006
[18] M. Garrido, J. Gómzez and J.A. Jaramillo, Homomorphisms on function algebras , Canad. J. Math. 46 (1994), 734-745. · Zbl 0808.46035 · doi:10.4153/CJM-1994-041-3
[19] M. González and J.M. Gutiérrez, Gantmacher type theorems for holomorphic mappings , · Zbl 0898.46035 · doi:10.1002/mana.3211860108
[20] M. Gonzalo and J.A. Jaramillo, Compact polynomials between Banach spaces , · Zbl 0853.46039
[21] R. Gonzalo, Suavidad y polinomios en espacios de Banach , Ph.D. Thesis, Universidad Complutense de Madrid, 1994.
[22] P. Harmand, D. Werner and W. Werner, \(M\)-ideals in Banach spaces and Banach algebras , Lecture Notes in Math. 1547 1993. · Zbl 0789.46011 · doi:10.1007/BFb0084355
[23] R.C. James, Super-reflexive spaces with bases , Pacific J. Math. 41 (1972), 409-419. · Zbl 0235.46031 · doi:10.2140/pjm.1972.41.409
[24] J.A. Jaramillo and A. Prieto, The weak-polynomial convergence on a Banach space , Proc. Amer. Math. Soc. 118 (1993), 463-468. JSTOR: · Zbl 0795.46042 · doi:10.2307/2160323
[25] B. Josefson, Bounding subsets of \(l_\infty(A)\) , J. Math. Pures Appl. (9) 57 (1978), 397-421. · Zbl 0403.46011
[26] H. Knaust and E. Odell, Weakly null sequences with upper \(\ell_p\)-estimates , Lecture Notes in Math., 1047 (1991), 85-107. · Zbl 0759.46013
[27] L.G. Llavona, Approximation of continuously differentiable functions , North-Holland, Amsterdam, 1986. · Zbl 0642.41001
[28] J. Mujica, Complex homomorphisms of the algebras of holomorphic functions on Fréchet spaces , Math. Ann. 241 (1979), 73-82. · Zbl 0386.46023 · doi:10.1007/BF01406710
[29] G. Pisiser, Factorization of linear operators and geometry of Banach spaces , Amer. Math. Soc. 60 1986. · Zbl 0588.46010
[30] H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from \(L^p(\mu)\) to \(L^p(\nu)\) , J. Funct. Anal. 4 (1969), 176-214. · Zbl 0185.20303 · doi:10.1016/0022-1236(69)90011-1
[31] R. Ryan, Weakly compact holomorphic mappings on Banach spaces , Pacific J. Math. 131 (1988), 179-190. · Zbl 0605.46038 · doi:10.2140/pjm.1988.131.179
[32] ——–, Dunford-Pettis properties , Bull. Acad. Pol. Sci. 27 (1979), 373-379. · Zbl 0418.46006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.