×

Quantile-based optimal portfolio selection. (English) Zbl 07432771

Summary: In this paper the concept of quantile-based optimal portfolio selection is introduced and a specific portfolio connected to it, the conditional value-of-return (CVoR) portfolio, is proposed. The CVoR is defined as the mean excess return or the conditional value-at-risk (CVaR) of the return distribution. The portfolio selection consists solely of quantile-based risk and return measures. Financial institutions that work in the context of Basel 4 use CVaR as a risk measure. In this regulatory framework sufficient and necessary conditions for optimality of the CVoR portfolio are provided under a general distributional assumption. Moreover, it is shown that the CVoR portfolio is mean-variance efficient when the returns are assumed to follow an elliptically contoured distribution. Under this assumption the closed-form expression for the weights and characteristics of the CVoR portfolio are obtained. Finally, the introduced methods are illustrated in an empirical study based on monthly data of returns on stocks included in the S&P index. It is shown that the new portfolio selection strategy outperforms several alternatives in terms of the final investor wealth.

MSC:

90Bxx Operations research and management science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acerbi, C., Spectral measures of risk: a coherent representation of subjective risk aversion, J Bank Finance, 26, 7, 1505-1518 (2002) · doi:10.1016/S0378-4266(02)00281-9
[2] Adam, A.; Houkari, M.; Laurent, J-P, Spectral risk measures and portfolio selection, J Bank Finance, 32, 9, 1870-1882 (2008) · doi:10.1016/j.jbankfin.2007.12.032
[3] Adcock, CJ, Asset pricing and portfolio selection based on the multivariate extended skew-student-t distribution, Ann Oper Res, 176, 1, 221-234 (2010) · Zbl 1233.91112 · doi:10.1007/s10479-009-0586-4
[4] Alexander, GJ; Baptista, AM, Economic implications of using a mean-var model for portfolio selection: a comparison with mean-variance analysis, J Econ Dyn Control, 26, 7, 1159-1193 (2002) · Zbl 1131.91325 · doi:10.1016/S0165-1889(01)00041-0
[5] Alexander, GJ; Baptista, AM, A comparison of var and cvar constraints on portfolio selection with the mean-variance modelA comparison of var and cvar constraints on portfolio selection with the mean-variance model, Manag Sci, 50, 9, 1261-1273 (2004) · doi:10.1287/mnsc.1040.0201
[6] Artzner, P.; Delbaen, F.; Eber, J-M; Heath, D., Coherent measures of risk, Math Financ, 9, 3, 203-228 (1999) · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[7] Bauder, D.; Bodnar, T.; Parolya, N.; Schmid, W., Bayesian mean-variance analysis: optimal portfolio selection under parameter uncertainty, Quant Finance, 21, 221-242 (2021) · Zbl 1466.91277 · doi:10.1080/14697688.2020.1748214
[8] Bazaraa, MS; Sherali, HD; Shetty, CM, Nonlinear programming: theory and algorithms (2013), New York: Wiley, New York
[9] Best, MJ; Grauer, RR, On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results, Rev Financ Stud, 4, 2, 315-342 (1991) · doi:10.1093/rfs/4.2.315
[10] Bodnar, T.; Dmytriv, S.; Parolya, N.; Schmid, W., Tests for the weights of the global minimum variance portfolio in a high-dimensional setting, IEEE Trans Signal Process, 67, 17, 4479-4493 (2019) · Zbl 07123374 · doi:10.1109/TSP.2019.2929964
[11] Bodnar T, Gupta A (2009) Construction and inferences of the efficient frontier in elliptical models. J Jpn Stat Soci 39:193-207 · Zbl 1248.91091
[12] Bodnar, T.; Mazur, S.; Okhrin, Y., Bayesian estimation of the global minimum variance portfolio, Eur J Oper Res, 256, 1, 292-307 (2017) · Zbl 1395.91395 · doi:10.1016/j.ejor.2016.05.044
[13] Bodnar, T.; Okhrin, O.; Parolya, N., Optimal shrinkage estimator for high-dimensional mean vector, J Multivar Anal, 170, 63-79 (2019) · Zbl 1409.60022 · doi:10.1016/j.jmva.2018.07.004
[14] Bodnar, T.; Okhrin, Y.; Vitlinskyy, V.; Zabolotskyy, T., Determination and estimation of risk aversion coefficients, CMS, 15, 2, 297-317 (2018) · Zbl 1417.91441 · doi:10.1007/s10287-018-0317-x
[15] Bodnar, T.; Parolya, N.; Schmid, W., Estimation of the global minimum variance portfolio in high dimensions, Eur J Oper Res, 266, 1, 371-390 (2018) · Zbl 1403.91307 · doi:10.1016/j.ejor.2017.09.028
[16] Bodnar, T.; Schmid, W., Econometrical analysis of the sample efficient frontier, Eur J Finance, 15, 3, 317-335 (2009) · doi:10.1080/13518470802423478
[17] Bodnar, T.; Schmid, W.; Zabolotskyy, T., Minimum var and minimum cvar optimal portfolios: estimators, confidence regions, and tests, Stat Risk Model Appl Finance Insurance, 29, 4, 281-314 (2012) · Zbl 1252.62106 · doi:10.1524/strm.2012.1118
[18] Bonaccolto, G.; Caporin, M.; Paterlini, S., Asset allocation strategies based on penalized quantile regression, CMS, 15, 1, 1-32 (2018) · Zbl 1402.62247 · doi:10.1007/s10287-017-0288-3
[19] Boukouvala, F.; Misener, R.; Floudas, CA, Global optimization advances in mixed-integer nonlinear programming, minlp, and constrained derivative-free optimization, cdfo, Eur J Oper Res, 252, 3, 701-727 (2016) · Zbl 1346.90677 · doi:10.1016/j.ejor.2015.12.018
[20] Chan, LK; Karceski, J.; Lakonishok, J., On portfolio optimization: forecasting covariances and choosing the risk model, Rev Financ Stud, 12, 5, 937-974 (1999) · doi:10.1093/rfs/12.5.937
[21] Eling, M., Fitting asset returns to skewed distributions: are the skew-normal and skew-student good models?, Insurance Math Econ, 59, 45-56 (2014) · Zbl 1306.91075 · doi:10.1016/j.insmatheco.2014.08.004
[22] Fang, K.; Zhang, Y., Generalized multivariate analysis (1990), New York: Science Press, New York · Zbl 0724.62054
[23] Fastrich, B.; Paterlini, S.; Winker, P., Constructing optimal sparse portfolios using regularization methods, CMS, 12, 3, 417-434 (2015) · Zbl 1355.91077 · doi:10.1007/s10287-014-0227-5
[24] Font, B., Bootstrap estimation of the efficient frontier, CMS, 13, 4, 541-570 (2016) · doi:10.1007/s10287-016-0257-2
[25] Golosnoy, V.; Gribisch, B.; Seifert, MI, Exponential smoothing of realized portfolio weights, J Empir Financ, 53, 222-237 (2019) · doi:10.1016/j.jempfin.2019.07.006
[26] Gupta, AK; Varga, T.; Bodnar, T., Elliptically contoured models in statistics and portfolio theory (2013), New York: Springer, New York · Zbl 1306.62028 · doi:10.1007/978-1-4614-8154-6
[27] Hamada, M.; Valdez, EA, Capm and option pricing with elliptically contoured distributions, J Risk Insurance, 75, 2, 387-409 (2008) · doi:10.1111/j.1539-6975.2008.00265.x
[28] He, XD; Zhou, XY, Portfolio choice via quantiles, Math Finance Int J Math Stat Financ Econ, 21, 2, 203-231 (2011) · Zbl 1229.91291
[29] Huang, D.; Zhu, S.; Fabozzi, FJ; Fukushima, M., Portfolio selection under distributional uncertainty: a relative robust cvar approach, Eur J Oper Res, 203, 1, 185-194 (2010) · Zbl 1176.91145 · doi:10.1016/j.ejor.2009.07.010
[30] Jiang, C-F; Peng, H-Y; Yang, Y-K, Tail variance of portfolio under generalized Laplace distribution, Appl Math Comput, 282, 187-203 (2016) · Zbl 1410.91421
[31] Jünger, M.; Liebling, TM; Naddef, D.; Nemhauser, GL; Pulleyblank, WR; Reinelt, G.; Rinaldi, G.; Wolsey, LA, 50 Years of integer programming 1958-2008: from the early years to the state-of-the-art (2009), New York: Springer, New York
[32] Kawas, B.; Thiele, A., Log-robust portfolio management with parameter ambiguity, CMS, 14, 2, 229-256 (2017) · Zbl 1397.90214 · doi:10.1007/s10287-017-0275-8
[33] Linsmeier, TJ; Pearson, ND, Value at risk, Financ Anal J, 56, 2, 47-67 (2000) · doi:10.2469/faj.v56.n2.2343
[34] Markowitz H (1952) Portfolio selection. J Finance 7(1):77-91
[35] Merton RC (1972) An analytic derivation of the efficient portfolio frontier. J Financ Quant Anal 7(4):1851-1872
[36] Merton, RC, On estimating the expected return on the market: an exploratory investigation, J Financ Econ, 8, 4, 323-361 (1980) · doi:10.1016/0304-405X(80)90007-0
[37] Owen, J.; Rabinovitch, R., On the class of elliptical distributions and their applications to the theory of portfolio choice, J Financ, 38, 3, 745-752 (1983) · doi:10.1111/j.1540-6261.1983.tb02499.x
[38] Rockafellar, RT; Uryasev, S., Optimization of conditional value-at-risk, J Risk, 2, 21-42 (2000) · doi:10.21314/JOR.2000.038
[39] Rockafellar, RT; Uryasev, S., Conditional value-at-risk for general loss distributions, J Bank Finance, 26, 7, 1443-1471 (2002) · doi:10.1016/S0378-4266(02)00271-6
[40] Schmid, W.; Zabolotskyy, T., On the existence of unbiased estimators for the portfolio weights obtained by maximizing the Sharpe ratio, AStA Adv Stat Anal, 92, 1, 29-34 (2008) · Zbl 1171.62066 · doi:10.1007/s10182-008-0054-5
[41] Shapiro, A.; Dentcheva, D.; Ruszczyński, A., Lectures on stochastic programming: modeling and theory (2009), Philadelphia: SIAM, Philadelphia · Zbl 1183.90005 · doi:10.1137/1.9780898718751
[42] Xie, W.; Ahmed, S., On quantile cuts and their closure for chance constrained optimization problems, Math Program, 172, 1-2, 621-646 (2018) · Zbl 1412.90096 · doi:10.1007/s10107-017-1190-z
[43] Yao, H.; Li, Z.; Lai, Y., Mean-cvar portfolio selection: a nonparametric estimation framework, Comput Oper Res, 40, 4, 1014-1022 (2013) · Zbl 1349.91323 · doi:10.1016/j.cor.2012.11.007
[44] Yu, J-R; Lee, W-Y; Chiou, W-JP, Diversified portfolios with different entropy measures, Appl Math Comput, 241, 47-63 (2014) · Zbl 1335.91072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.