×

On the definition and the construction of pockets in macromolecules. (English) Zbl 0928.68113

Summary: The shape of a protein is important for its functions. This includes the location and size of identifiable regions in its complement space. We formally define pockets as regions in the complement with limited accessibility from the outside. Pockets can be efficiently constructed by an algorithm based on alpha complexes. The algorithm is implemented and applied to proteins with known three-dimensional conformations.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Software:

RasMol
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brisson, E., Representing geometric structures in \(d\) dimensions: topology and order, Discrete Comput. Geom., 9, 387-426 (1993) · Zbl 0783.68129
[2] Colombo, M. F.; Rau, D. C.; Parsegian, V. A., Protein solvation in allosteric regulation: A water effect on hemoglobin, Science, 256, 655-659 (1992)
[3] Connolly, T. H., Molecular interstitial skeleton, Comput. Chem., 15, 37-45 (1991)
[4] Cormen, T. H.; Leiserson, Ch. E.; Rivest, R. L., Introduction to Algorithms (1990), MIT Press: MIT Press Cambridge, MA
[5] Creighton, T. E., Proteins. Structures and Molecular Principles (1984), Freeman: Freeman New York
[6] Delaunay, B., Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7, 793-800 (1934) · JFM 60.0946.06
[7] Dobkin, D. P.; Laszlo, M. J., Primitives for the manipulation of three-dimensional subdivisions, Algorithmica, 4, 3-32 (1989) · Zbl 0664.68023
[8] Edelsbrunner, H., The union of balls and its dual shape, (Bárány, I.; Pach, J., László Fejes Tóth Festschrift. László Fejes Tóth Festschrift, Discrete Comput. Geom., 13 (1995)), 415-440 · Zbl 0826.68053
[9] Edelsbrunner, H., Deformable smooth surface design, Discrete Comput. Geom (1998), to appear · Zbl 0924.68197
[10] Edelsbrunner, H.; Facello, M.; Fu, P.; Liang, J., Measuring proteins and voids in proteins, (Proc. 28th Hawaii Internat. Conf. Syst. Sci. (1995)), 256-264
[11] Edelsbrunner, H.; Facello, M.; Fu, P.; Mücke (devs.), E. P., Three-dimensional alpha shapes (1991-1996), Software developed at the Univ. Illinois at Urbana-Champaign: Software developed at the Univ. Illinois at Urbana-Champaign Illinois
[12] Edelsbrunner, H.; Mücke, E. P., Simulation of Simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graphics, 9, 66-104 (1990) · Zbl 0732.68099
[13] Edelsbrunner, H.; Mücke, E. P., Three-dimensional alpha shapes, ACM Trans. Graphics, 13, 43-72 (1994) · Zbl 0806.68107
[14] Kim, S.; Liang, J.; Barry, B. A., Chemical complementation identifies a proton acceptor for redox-active tyrosin D in photosystem II, (Proc. Natl. Acad. Sci. USA, 94 (1997)), 14406-14411
[15] Lee, B.; Richards, F. M., The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol., 55, 379-400 (1971)
[16] J. Liang, H. Edelsbrunner, C. Woodward, Anatomy of protein pockets and cavities: measurement of binding sites and implications for ligand design, Protein Science, in press.; J. Liang, H. Edelsbrunner, C. Woodward, Anatomy of protein pockets and cavities: measurement of binding sites and implications for ligand design, Protein Science, in press.
[17] Liang, J.; McGee, M. P., Mechanisms of coagulation factor Xa inhibition by antithrombin: Correlation between hydration structures and water transfer during reactive loop insertion, Biophys. J., 75, 573-582 (1998)
[18] Mattos, C.; Rasmussen, B.; Ding, X.; Petsko, G. A.; Ringe, D., Analogous inhibitors of elastase do not always bind analogously, Struct. Biol., 1, 55-58 (1994)
[19] Miller, G., Efficient algorithms for local and global accessibility shading, Comput. Graphics, 28, 319-326 (1994)
[20] Richards, F. M., Areas, volumes, packing, and protein structures, Ann. Rev. Biophys. Bioeng., 6, 151-176 (1977)
[21] Sayle, R.; Milner-White, E. J., RasMol: biomolecular graphics for all, Trends Biochem. Sci. TIBS-20, 374 (1995)
[22] Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W., Discovering high-affinity ligands for proteins: Sar by nmr, Science, 274, 1531-1534 (1996)
[23] Varshney, A.; Brooks, F. P.; Richardson, D. C.; Wright, W. V.; Manocha, D., Defining, computing, and visualizing molecular interfaces, (Nielson, G. M.; Silver, D., Proc. IEEE Visualization’95 (1995)), 36-43
[24] Voronoi, G., Nouvelles applications des paramètres continus à las théorie des formes quadratiques, J. Reine Angew. Math., 133, 97-178 (1907) · JFM 38.0261.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.