×

Artificial boundary conditions for atomic simulations of face-centered-cubic lattice. (English) Zbl 1312.74004

Summary: We design a class of matching boundary conditions for atomic simulations of the face-centered-cubic lattice. Such a condition takes the form of a linear constraint for atoms near the boundary. A normal matching boundary condition is obtained by matching the dispersion relation in the long wave limit. A two-angle matching boundary condition is constructed through operator multiplication with the help of apparent wave propagation. The edge atoms and the corner atoms are treated in a consistent manner. Reflection coefficient analysis and wave-packet tests verify the effectiveness of the proposed boundary conditions for general incidence, not limited to long waves. The treatment is local in both space and time, yielding negligible additional numerical cost. Vector wave formulation is also presented, and applied to nanoindentation simulations.

MSC:

74A60 Micromechanical theories
34A33 Ordinary lattice differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armfield SW (1991) Finite difference solutions of the Navier–Stokes equations on staggered and non-staggered grids. Comput Fluids 20: 1–17 · Zbl 0731.76044 · doi:10.1016/0045-7930(91)90023-B
[2] Berenger JP (1994) A perfectly matched layer for the absorption of the electromagnetic waves. J Comput Phys 114: 185–200 · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[3] Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford · Zbl 0057.44601
[4] Clayton R, Engquist B (1977) Absorbing boundary condtions for acoustic and elastic wave equations. Bull Seism Soc Am 67: 1529–1540
[5] E W, Huang Z (2001) Matching conditions in atomistic-continuum modeling of materials. Phys Rev Lett 87: 135501 · doi:10.1103/PhysRevLett.87.135501
[6] Engquist B, Majda A (1979) Radiation boundary conditions for acoustic and elastic calculations. Comm Pure Appl Math 32: 313–357 · Zbl 0396.76066 · doi:10.1002/cpa.3160320303
[7] Fang M, Tang S (2009) Efficient and robust design for absorbing boundary conditions in atomistic computations. Chin Phys Lett 26: 116201 · doi:10.1088/0256-307X/26/11/116201
[8] Germann TC, Tanguy D, Holian BL, Lomdahl PS, Mareschal M, Ravelo R (2004) Dislocation structure hehind a shock front in fcc perfect crystals: atomistic simulation results. Metal Mater Trans A 35: 2609–2615 · doi:10.1007/s11661-004-0206-5
[9] Guddati MN, Thirunavukkarasu S (2009) Phonon absorbing boundary conditions for molecular dynamics. J Comput Phys 228: 8112–8134 · Zbl 1175.82014 · doi:10.1016/j.jcp.2009.07.033
[10] Higdon RL (1987) Absorbing boundary conditions for the wave equation. Math Comp 49: 65–90 · Zbl 0654.65083 · doi:10.1090/S0025-5718-1987-0890254-1
[11] Johnson KL (1987) Contact Mechanics. Cambridge University Press, Cambridge
[12] Karpov EG, Wagner GJ, Liu WK (2005) A Green’s function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations. Int J Numer Mech Eng 62: 1250–1262 · Zbl 1080.74050 · doi:10.1002/nme.1234
[13] Karpov EG, Park HS, Liu WK (2007) A phonon heat bath approach for the atomistic and multiscale simulation of solids. Int J Numer Meth Eng 70: 351–378 · Zbl 1194.74526 · doi:10.1002/nme.1884
[14] Karpov EG, Yu H, Park HS, Liu WK, Wang QJ, Qian D (2006) Multiscale boundary conditions in crystalline solids: theory and application to nanoindentation. Int J Solids Struct 43: 6359–6379 · Zbl 1120.74396 · doi:10.1016/j.ijsolstr.2005.10.003
[15] Kimizuka H, Kaburaki H, Shimizu F, Li J (2002) Crack-tip dislocation nanostructures in dynamical fracture of fcc metals: a molecular dynamics study. J Comput-Aided Mater 8: 127–149
[16] Li X, E W (2005) Multiscale modeling of the dynamics of solids at finite temperature. J Mech Phys Solids 53: 1650–1685 · Zbl 1120.74313
[17] Li X, E W (2007) Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: treatment of the thermal bath. Phys Rev B 76: 104107
[18] Lilleodden ET, Zimmerman JA, Foiles SM, Nix WD (2003) Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids 51: 901–920 · Zbl 1038.74678 · doi:10.1016/S0022-5096(02)00119-9
[19] Lindman EL (1975) ”Free-space” boundary conditions for the time dependent wave equation. J Comput Phys 18: 66–78 · Zbl 0417.73042 · doi:10.1016/0021-9991(75)90102-3
[20] Liu WK, Karpov EG, Park HS (2006) Nano mechanics and Materials: Theory, Multiscale Methods and Applications. Wiley, New York
[21] Medyanik SN, Karpov EG, Liu WK (2006) Domain reduction method for atomistic simulations. J Comput Phys 218: 836–859 · Zbl 1158.82315 · doi:10.1016/j.jcp.2006.03.008
[22] Pang G, Tang S (2011) Time history kernel functions for square lattice. Comput Mech 48: 699–711 · Zbl 1334.70002 · doi:10.1007/s00466-011-0615-4
[23] Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207: 588–609 · Zbl 1213.74267 · doi:10.1016/j.jcp.2005.01.028
[24] Park HS, Karpov EG, Liu WK (2005) Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations. Int J Numer Mech Eng 64: 237–259 · Zbl 1138.74421 · doi:10.1002/nme.1357
[25] Qian D, Phadke M, Karpov E, Liu WK (2011) A domain-reduction approach to bridging-scale simulation of one-dimensional nanostructures. Comput Mech 47: 31–47 · Zbl 1398.74049 · doi:10.1007/s00466-010-0525-x
[26] Rao S, Hernandez C, Simmons JP, Parthasarathy TA, Woodward C (1998) Green’s function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations. Philos Mag A 77: 231–256 · doi:10.1080/01418619808214240
[27] Tang S (2008) A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. J Comput Phys 227: 4038–4062 · Zbl 1135.74049 · doi:10.1016/j.jcp.2007.12.012
[28] Tang S, Liu WK, Karpov EG, Hou TY (2007) Bridging atomistic/continuum scales in solids with moving dislocations. Chin Phys Lett 24(1): 161–164 · doi:10.1088/0256-307X/24/1/044
[29] To AC, Li S (2005) Perfectly matched multiscale simulations. Phys Rev B 72: 035414 · doi:10.1103/PhysRevB.72.035414
[30] Wang X, Tang S (2010) Matching boundary conditions for diatomic chains. Comput Mech 46: 813–826 · Zbl 1344.74048 · doi:10.1007/s00466-010-0515-z
[31] Wang X, Tang S (2010) Matching boundary conditions for multiscale computations of crystalline solids. I. One dimensional chains, prepint
[32] Wang X, Tang S (2010) Matching boundary conditions for multiscale computations of crystalline solids. II. Multiple dimensional lattices, preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.