zbMATH — the first resource for mathematics

Stochastic delay evolution equations driven by sub-fractional Brownian motion. (English) Zbl 1343.60086
Summary: In this paper, we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a sub-fractional Brownian motion \(S^{H}_{Q}(t)\): \(dX(t)=(AX(t)+f(t,X_{t}))\, dt+g(t)\, dS^{H}_{Q}(t)\) with index \(H\in(1/2,1)\).

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G15 Gaussian processes
60H05 Stochastic integrals
Full Text: DOI
[1] Bojdecki, TLG; Gorostiza, LG; Talarczyk, A, Sub-fractional Brownian motion and its relation to occupation times, Stat. Probab. Lett., 69, 405-419, (2004) · Zbl 1076.60027
[2] Bojdecki, TLG; Gorostiza, LG; Talarczyk, A, Limit theorems for occupation time fluctuations of branching systems I: long-range dependence, Stoch. Process. Appl., 116, 1-18, (2006) · Zbl 1082.60024
[3] Bojdecki, TLG; Gorostiza, LG; Talarczyk, A, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab., 12, 161-172, (2007) · Zbl 1128.60025
[4] Tudor, C, Some properties of the sub-fractional Brownian motion, Stochastics, 79, 431-448, (2007) · Zbl 1124.60038
[5] Tudor, C, Some aspects of stochastic calculus for the sub-fractional Brownian motion, An. Univ. Bucur., Mat., 57, 199-230, (2008) · Zbl 1174.60024
[6] Tudor, C, Inner product spaces of integrands associated to sub-fractional Brownian motion, Stat. Probab. Lett., 78, 2201-2209, (2008) · Zbl 1283.60082
[7] Tudor, C: Sub-fractional Brownian Motion as a Model in Finance. University of Bucharest (2008) · Zbl 1205.60066
[8] Tudor, C, On the Wiener integral with respect to a sub-fractional Brownian motion on an interval, J. Math. Anal. Appl., 351, 456-468, (2009) · Zbl 1154.60041
[9] Tudor, C, Berry-esseén bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion, J. Math. Anal. Appl., 375, 667-676, (2011) · Zbl 1205.60066
[10] Yan, L; Shen, G, On the collision local time of sub-fractional Brownian motions, Stat. Probab. Lett., 80, 296-308, (2010) · Zbl 1185.60040
[11] Young, LC, An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67, 251-282, (1936) · JFM 62.0250.02
[12] Yan, L; Shen, G; He, K, Itô’s formula for a sub-fractional Brownian motion, Commun. Stoch. Anal., 5, 135-159, (2011) · Zbl 1331.60068
[13] Shen, G; Chen, C, Stochastic integration with respect to the sub-fractional Brownian motion with \(H∈(0,1/2)\), Stat. Probab. Lett., 82, 240-251, (2012) · Zbl 1239.60041
[14] Mendy, I: A Stochastic differential equation driven by a sub-fractional Brownian motion. Preprint (2010) · Zbl 1231.60033
[15] Dzhaparidze, K; Van Zanten, H, A series expansion of fractional Brownian motion, Probab. Theory Relat. Fields, 103, 39-55, (2004) · Zbl 1059.60048
[16] Mendy, I, Parametric estimation for sub-fractional Ornstein-Uhlenbeck process, J. Stat. Plan. Inference, 143, 663-674, (2013) · Zbl 1428.62106
[17] Nualart, D: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006) · Zbl 1099.60003
[18] Da Prato, G, Zabczyk, J: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992) · Zbl 0761.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.