×

Time-delayed feedback control optimization for quasi-linear systems under random excitations. (English) Zbl 1269.70049

Summary: A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Itô equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation.

MSC:

70Q05 Control of mechanical systems
70L05 Random vibrations in mechanics of particles and systems
93E20 Optimal stochastic control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fleming W.H., Rishel R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975) · Zbl 0323.49001
[2] Fleming W.H., Soner H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1992) · Zbl 0773.60070
[3] Yong J.M., Zhou X.Y.: Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer, New York (1999) · Zbl 0943.93002
[4] Bensoussan A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992) · Zbl 0776.93094
[5] Zhu W.Q., Ying Z.G.: Optimal nonlinear feedback control of quasi Hamiltonian systems. Sci. China, Ser. A 42, 1213–1219 (1999) · Zbl 0961.93060 · doi:10.1007/BF02875989
[6] Huan R.H., Deng M.L., Zhu W.Q.: Optimal control strategies for stochastically excited quasi partially integrable Hamiltonian systems. Acta Mech. Sin. 23(3), 311–319 (2007) · Zbl 1202.70129 · doi:10.1007/s10409-007-0079-0
[7] Zhu W.Q., Ying Z.G., Soong T.T.: An optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dyn. 24, 31–51 (2001) · Zbl 0998.70022 · doi:10.1023/A:1026527404183
[8] Zhu W.Q., Yang Y.Q.: Stochastic averaging of quasi non-integrable Hamiltonian systems. ASME J. Appl. Mech. 64, 157–164 (1997) · Zbl 0902.70013 · doi:10.1115/1.2787267
[9] Zhu W.Q., Huang Z.L., Yang Y.Q.: Stochastic averaging of quasi integrable Hamiltonian systems. ASME J. Appl. Mech. 64, 975–984 (1997) · Zbl 0918.70009 · doi:10.1115/1.2789009
[10] Zhu W.Q., Huang Z.L., Suzuki Y.: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. Int. J. Nonlinear Mech. 37, 419–437 (2002) · Zbl 1346.70013 · doi:10.1016/S0020-7462(01)00018-X
[11] Elbeyli O., Sun J.Q.: Feedback control optimization of nonlinear systems under random excitaions. Nonlinear Sci. Numer. Simul. 11, 125–136 (2005) · Zbl 1085.93526 · doi:10.1016/j.cnsns.2002.03.001
[12] Deng M.L., Zhu W.Q.: Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems. Acta Mech. Sin. 23(4), 437–444 (2007) · Zbl 1202.70063 · doi:10.1007/s10409-007-0087-0
[13] Agrawal A.K., Yang J.N.: Effect of fied time delay on stability and performance of actively controlled civil engineering structures. Earthquake Eng. Struct. Dyn. 26, 1169–1185 (1997) · doi:10.1002/(SICI)1096-9845(199711)26:11<1169::AID-EQE702>3.0.CO;2-S
[14] Hu H.Y., Wang Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002) · Zbl 1035.93002
[15] Di Paola M., Pirrotta A.: Time delay induced effects on control of linear systems under random excitation. Probab. Eng. Mech. 16, 43–51 (2001) · doi:10.1016/S0266-8920(00)00006-0
[16] Wang Z.H., Hu H.Y.: Stability of linear time variant dynamic systems with multiple delays. Acta Mech. Sin. 14(3), 274–282 (1998) · doi:10.1007/BF02487763
[17] Liu Z.H., Zhu W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J. Sound Vib. 299, 178–195 (2007) · Zbl 1241.93021 · doi:10.1016/j.jsv.2006.07.007
[18] Zhu W.Q., Lin Y.K.: Stochastic averaging of energy envelope. ASME J. Eng. Mech. 117, 1890–1905 (1991) · doi:10.1061/(ASCE)0733-9399(1991)117:8(1890)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.