zbMATH — the first resource for mathematics

Polynomial elements in canonical basis \(\mathbf B\) with two-dimensional support for type \(A_4\). I. (English) Zbl 1242.17018
This paper continues the second author’s former work. All \(62\) monomial elements and \(144\) polynomial elements with one-dimensional support in the canonical basis \(\mathbb{B}\) of the quantum group for type \(A_{4}\) have been determined in [Y. Hu, J. Ye and X. Yue, J. Algebra 263, No. 2, 228–245 (2003; Zbl 1125.17309)] and [Y. Hu, J. Ye, Commun. Algebra 33, No. 11, 3855–3877 (2005; Zbl 1130.17007)], respectively. It is conjectured that there are other polynomial elements in \(\mathbb{B}\) with two- or three-dimensional support. In this paper, the authors compute \(50\) polynomial elements with two-dimensional support of different-exponent type and \(62\) polynomial elements with two-dimensional support of same-exponent type in the canonical basis \(\mathbb{B}\) of the quantum group for type \(A_{4}\).

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
20G42 Quantum groups (quantized function algebras) and their representations
Full Text: DOI Link
[1] DOI: 10.1090/S1088-4165-04-00199-2 · Zbl 1062.17007 · doi:10.1090/S1088-4165-04-00199-2
[2] DOI: 10.1006/jabr.2000.8536 · Zbl 0999.17024 · doi:10.1006/jabr.2000.8536
[3] DOI: 10.1080/00927870500261033 · Zbl 1130.17007 · doi:10.1080/00927870500261033
[4] DOI: 10.1016/S0021-8693(03)00066-8 · Zbl 1125.17309 · doi:10.1016/S0021-8693(03)00066-8
[5] DOI: 10.1215/S0012-7094-91-06321-0 · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[6] Lusztig G., J. Amer. Math. Soc. 3 pp 257–
[7] DOI: 10.1090/S0894-0347-1990-1035415-6 · doi:10.1090/S0894-0347-1990-1035415-6
[8] Lusztig G., Israel Math. Conf. Proc. 7 pp 117–
[9] DOI: 10.1006/jabr.1997.7370 · Zbl 0912.17007 · doi:10.1006/jabr.1997.7370
[10] DOI: 10.1080/00927879908826784 · Zbl 0952.17009 · doi:10.1080/00927879908826784
[11] DOI: 10.1006/jabr.1998.7688 · Zbl 0967.17010 · doi:10.1006/jabr.1998.7688
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.