×

zbMATH — the first resource for mathematics

Three-dimensional stress analysis of thin structures using a boundary element method with sinh transformation for nearly singular integrals. (English) Zbl 1368.74073
Summary: In this work a three dimensional (3D) boundary element method was established with an efficient nonlinear coordinate transformation scheme, namely sinh transformation, to evaluate nearly singular integrals in boundary integral formulations. Second-order quadrilateral surface elements were developed based on this method to accurately describe the geometry of thin structures. The elastic behaviors of selected thin structures were then computed by using the 3D boundary element model to demonstrate the accuracy and efficiency of this approach. A number of testing examples, i.e., the 3D Kirsch problem, the thin spherical shell problem, the ellipsoidal vessel problem with non-uniform thickness and the hollow circular cylinder problem, were numerically studied to test the established method. Remarkable accuracy and efficiency were found in the developed approach through the comparison to the numerical results and analytical solutions reported in the literature.
MSC:
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74A10 Stress
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Luo, J. F.; Liu, Y. J.; Berger, E. J., Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method, Comput. Mech., 22, 404-412, (1998) · Zbl 0938.74075
[2] Albuquerque, E. L.; Aliabadi, M. H., A boundary element formulation for boundary only analysis of thin shallow shells, Comput. Model. Eng. Sci., 29, 63-73, (2008) · Zbl 1232.74118
[3] Liu, M., Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation, Int. J. Solids Struct., 67, 263-271, (2015)
[4] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291, (2015) · Zbl 1423.74811
[5] Pagani, M.; Perego, U., Explicit dynamics simulation of blade cutting of thin elastoplastic shells using “directional” cohesive elements in solid-shell finite element models, Comput. Methods Appl. Mech. Engrg., 285, 515-541, (2015) · Zbl 1423.74688
[6] Pandurangi, S. S.; Kulkarni, S. S., Mechanics of wrinkling of a thin film bonded to a compliant substrate under the influence of spatial thermal modulation, Int. J. Solids Struct., 62, 124-133, (2015)
[7] Liu, Y. J.; Fan, H., Analysis of thin piezoelectric solids by the boundary element method, Comput. Methods Appl. Mech. Engrg., 191, 2297-2315, (2002) · Zbl 1131.74342
[8] Zhang, Y.; Gu, Y.; Chen, J. T., Boundary element analysis of the thermal behavior in thin-coated cutting tools, Eng. Anal. Bound. Elem., 34, 775-784, (2010) · Zbl 1244.74203
[9] Hills, D. A.; Paynter, R. J.H.; Dini, D., An overview of the quantification of fretting fatigue lives of complete contacts, Eng. Fract. Mech., 80, 3-12, (2012)
[10] Liu, Y. J., Analysis of shell-like structures by the boundary element method based on 3-D elasticity: formulation and verification, Internat. J. Numer. Methods Engrg., 41, 541-558, (1998) · Zbl 0910.73068
[11] Gu, Y.; Chen, W.; Zhang, C., Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method, Int. J. Solids Struct., 50, 20-21, 3460-3471, (2013)
[12] Cheng, A. H.D.; Chen, C. S.; Golberg, M. A.; Rashed, Y. F., BEM for theomoelasticity and elasticity with body force-a revisit, Eng. Anal. Bound. Elem., 25, 377-387, (2001) · Zbl 1014.74075
[13] Cheng, A. H.D.; Cheng, D. T., Heritage and early history of the boundary element method, Eng. Anal. Bound. Elem., 29, 268-302, (2005) · Zbl 1182.65005
[14] Marin, L., Boundary element-minimal error method for the Cauchy problem associated with Helmholtz-type equations, Comput. Mech., 44, 205-219, (2009) · Zbl 1185.74097
[15] Mukherjee, S.; Chati, M. K.; Shi, X., Evaluation of nearly singular integrals in boundary element contour and node methods for three-dimensional linear elasticity, Int. J. Solids Struct., 37, 7633-7654, (2000) · Zbl 0993.74077
[16] Xie, G. Z.; Zhang, J. M.; Dong, Y. D.; Huang, C.; Li, G. Y., An improved exponential transformation for nearly singular boundary element integrals in elasticity problems, Int. J. Solids Struct., 51, 1322-1329, (2014)
[17] Zhang, Y. M.; Li, X. C.; Sladek, V.; Sladek, J.; Gao, X. W., Computation of nearly singular integrals in 3D BEM, Eng. Anal. Bound. Elem., 48, 32-42, (2014) · Zbl 1403.65245
[18] Telles, J. C.F., A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals, Internat. J. Numer. Methods Engrg., 24, 959-973, (1987) · Zbl 0622.65014
[19] Ye, W. J., A new transformation technique for evaluating nearly singular integrals, Comput. Mech., 42, 457-466, (2008) · Zbl 1163.65089
[20] Sladek, V.; Sladek, J.; Tanaka, M., Optimal transformations of the integration variables in computation of singular integrals in BEM, Internat. J. Numer. Methods Engrg., 47, 1263-1283, (2000) · Zbl 0962.74073
[21] Johnston, P. R., Application of sigmoidal transformation to weakly singular and near singular boundary element integrals, Internat. J. Numer. Methods Engrg., 45, 1333-1348, (1999) · Zbl 0935.65130
[22] Barbara, M.; Johnston; Johnston, P. R.; Elliott, D., A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method, J. Comput. Appl. Math., 245, 148-161, (2013) · Zbl 1262.65043
[23] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Internat. J. Numer. Methods Engrg., 62, 564-578, (2005) · Zbl 1119.65318
[24] Johnston, B. M.; Johnston, P. R.; Elliott, D., A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, Internat. J. Numer. Methods Engrg., 69, 1460-1479, (2007) · Zbl 1194.65143
[25] Gu, Y.; Chen, W.; Zhang, C., The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements, Eng. Anal. Bound. Elem., 37, 301-308, (2013) · Zbl 1352.65586
[26] Johnston, P. R.; Johnston, B. M.; Elliott, D., Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals, Eng. Anal. Bound. Elem., 37, 708-718, (2013) · Zbl 1297.65179
[27] Li, X. C.; Zhang, Y. M.; Gong, Y. P.; Su, Y.; Gao, X. W., Use of the sinh transformation for evaluating 2D nearly singular integrals in 3D BEM, Acta Mech., 226, 2873-2885, (2015) · Zbl 1325.65164
[28] Huang, Q.; Cruse, T. A., Some notes on singular integral techniques in boundary element analysis, Internat. J. Numer. Methods Engrg., 36, 2643-2659, (1993) · Zbl 0781.73076
[29] Ma, H.; Kamiya, N., Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method, Eng. Anal. Bound. Elem., 26, 329-339, (2002) · Zbl 1003.65133
[30] Chen, X. L.; Liu, Y. J., An advanced 3D boundary element method for characterizations of composite materials, Eng. Anal. Bound. Elem., 29, 513-523, (2005) · Zbl 1182.74212
[31] Zhang, Y. M.; Li, X. C.; Sladek, V.; Sladek, J.; Gao, X. W., A new method for numerical evaluation of nearly singular integrals over high-order geometry elements in 3D BEM, J. Comput. Appl. Math., 277, 57-72, (2015) · Zbl 1302.65264
[32] Niu, Z. R.; Wendland, W. L.; Wang, X. X.; Zhou, H. L., A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods, Comput. Methods Appl. Mech. Engrg., 194, 1057-1074, (2005) · Zbl 1113.74084
[33] Chati, M. K.; Mukherjee, S.; Mukherjee, Y. X., The boundary node method for three-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 46, 1163-1184, (1999) · Zbl 0951.74075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.