×

A conservation-moment-based implicit finite volume lattice Boltzmann method for steady nearly incompressible flows. (English) Zbl 1453.76169

Summary: This paper presents an efficient, low memory cost, implicit finite volume lattice Boltzmann method (FVLBM) based on conservation moments acceleration for steady nearly incompressible flows. In the proposed scheme, not as the conventional implicit schemes, both the micro lattice Boltzmann equations (LBE) and the associated conservation moment equations are solved by the matrix-free, lower-upper symmetric Gauss-Seidel scheme (LUSGS) and the conservation moment equations are used to predict equilibrium distribution functions at the new time, which eliminates the storage of the Jacobian matrix of the collision term in the implicit LBE system and provides a driving force for the fast convergence of the LBE. Moreover, by utilizing the projection matrix and the collision invariant, we can construct the fluxes of the moment equations efficiently from the fluxes of the LBE and avoid the time-consuming reconstruction procedure for obtaining the fluxes of the moment equations. To demonstrate the accuracy and high efficiency of the proposed scheme, comparison studies of simulation results of several two-dimensional testing cases by the present scheme and an explicit FVLBM are conducted and numerical results show that the proposed implicit scheme can be as accurate as its explicit counterpart with 1 or 2 orders times speedup.

MSC:

76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nourgaliev, R. R.; Dinh, T.-N.; Theofanous, T. G.; Joseph, D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiph. Flow, 29, 117-169 (2003) · Zbl 1136.76594
[2] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180
[3] McNamara, G. R.; Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett., 61, 2332 (1988)
[4] Cao, N.; Shen, S. Y.; Jin, S.; Matinez, D., Physic symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 55, R21-R24 (1997)
[5] Guo, Z.; Zhao, T. S., Explicit finite-difference lattice Boltzmann method for curvilinear coordinates, Phys. Rev. E, 67, Article 066709 pp. (2003)
[6] Reider, M.; Sterling, J., Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations, Comput. Fluids, 24, 459-467 (1995) · Zbl 0845.76086
[7] Ubertini, S.; Bella, G.; Succi, S., Lattice Boltzmann method on unstructured grids: further developments, Phys. Rev. E, 68, Article 016701 pp. (2003)
[8] Stiebler, M.; Tölke, J.; Krafczyk, M., An upwind discretization scheme for the finite volume lattice Boltzmann method, Comput. Fluids, 35, 814-919 (2006) · Zbl 1177.76329
[9] Patil, D.; Lakshmisha, K., Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys., 228, 5262-5279 (2009) · Zbl 1280.76054
[10] Li, W.; Kaneda, M.; Suga, K., A stable, low diffusion up-wind scheme for unstructured finite volume lattice Boltzmann method, (Proceedings of the 4th Asian Symposium on Computational Heat Transfer and Fluid Flow. Proceedings of the 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, Hong Kong, China, June (2013)), 3-6
[11] Li, W.; Luo, L.-S., Finite volume lattice Boltzmann method for nearly incompressible flows on arbitrary unstructured meshes, Commun. Comput. Phys., 20, 301-324 (2016) · Zbl 1373.76256
[12] Li, W.; Luo, L.-S., An implicit block LUSGS finite volume lattice Boltzmann scheme for steady flows on arbitrary unstructured meshes, J. Comput. Phys., 327, 503-518 (2016) · Zbl 1373.76255
[13] Lee, T.; Lin, C.-L., A characteristic Galerkin method for discrete Boltzmann equation, J. Comput. Phys., 171, 336-356 (2001) · Zbl 1017.76043
[14] Lee, T.; Lin, C., An Eulerian description of the streaming process in the lattice Boltzmann equation, J. Comput. Phys., 185, 445-471 (2003) · Zbl 1047.76106
[15] Li, Y.; LeBoeuf, E. J.; Basu, P. K., Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh, Phys. Rev. E, 72, Article 046711 pp. (2005)
[16] Li, W., High order spectral difference lattice Boltzmann method for incompressible hydrodynamics, J. Comput. Phys., 345, 618-636 (2017) · Zbl 1378.76095
[17] Tölke, J.; Krafczyk, M.; Schulz, M.; Rank, E.; Berrios, R., Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK models, Int. J. Mod. Phys. C, 09, 1143-1157 (1998)
[18] Huang, J.; Yang, C.; Cai, X.-C., A fully implicit method for lattice Boltzmann equations, SIAM J. Sci. Comput., 37, S291-S313 (2015) · Zbl 1325.76144
[19] Li, W., A matrix-free, implicit finite volume lattice Boltzmann method for steady flows, Comput. Fluids, 148, 157-165 (2017) · Zbl 1410.76246
[20] Gol’Din, V. Y., A quasi-diffusion method of solving the kinetic equation, USSR Comput. Math. Math. Phys., 4, 136-149 (1964) · Zbl 0149.11804
[21] Alcouffe, R. E., Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations, Nucl. Sci. Eng., 64, 344-355 (1977)
[22] Winkler, K.-H. A.; Norman, M. L.; Mihalas, D., Implicit adaptive-grid radiation hydrodynamics, (Multiple Time Scales (1985)), 145-184 · Zbl 0646.76106
[23] Larsen, E., A grey transport acceleration method for time-dependent radiative transfer problems, J. Comput. Phys., 78, 459-480 (1988) · Zbl 0661.65146
[24] Mason, R. J., Implicit moment particle simulation of plasmas, J. Comput. Phys., 41, 233-244 (1981) · Zbl 0469.76121
[25] Brackbill, J.; Forslund, D., An implicit method for electromagnetic plasma simulation in two dimensions, J. Comput. Phys., 46, 271-308 (1982) · Zbl 0489.76127
[26] Zhu, Y.; Zhong, C.; Xu, K., Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys., 315, 16-38 (2016) · Zbl 1349.76791
[27] Taitano, W. T.; Knoll, D. A.; Chacón, L.; Reisner, J. M.; Prinja, A. K., Moment-based acceleration for neutral gas kinetics with BGK collision operator, J. Comput. Theor. Transp., 43, 83-108 (2014) · Zbl 07500142
[28] Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.; Womeldorff, G., Multiscale high-order/low-order (holo) algorithms and applications, J. Comput. Phys., 330, 21-45 (2017) · Zbl 1380.65316
[29] Li, W.; Li, W., A gas-kinetic BGK scheme for the finite volume lattice Boltzmann method for nearly incompressible flows, Comput. Fluids, 162, 126-138 (2018) · Zbl 1390.76471
[30] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811 (1997)
[31] Qian, Y.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479-484 (1992) · Zbl 1116.76419
[32] d’Humières, D., Generalized lattice-Boltzmann equations, Rarefied gas dynamics: theory and simulations, Prog. Astronaut. Aeronaut., 450-458 (1994)
[33] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546 (2000)
[34] Jameson, A.; Yoon, S., Lower-upper implicit schemes with multiple grids for the Euler equations, AIAA J., 25, 929-935 (1987)
[35] Sharov, D.; Nakahashi, K., Reordering of 3D hybrid unstructured grids for vectorized LUSGS Navier-Stokes computations, AIAA Pap., 97, 2102-2117 (1997)
[36] Luo, H.; Baum, J. D.; Loehner, R., A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids, Int. J. Comput. Fluid Dyn., 14, 133-157 (2000) · Zbl 1033.76035
[37] Li, W.; Kakimoto, K., A new matrix-free, high efficient preconditioned LUSGS method for low Mach axisymmetric flows on unstructured mesh, (Proceedings of the 4th Asian Symposium on Computational Heat Transfer and Fluid Flow. Proceedings of the 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, Hong Kong, China, June (2013)), 3-6
[38] Li, W.; Kaneda, M.; Suga, K., An implicit gas kinetic BGK scheme for high temperature equilibrium gas flows on unstructured meshes, Comput. Fluids, 93, 100-106 (2014) · Zbl 1391.76283
[39] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[40] Li, W.; Li, W., On convergence accelerations of the DUGKS for steady nearly incompressible flows, (The 10th International Conference on Computational Physics. The 10th International Conference on Computational Physics, ICCP10, Macao, China, January 16-20 (2017))
[41] Blazek, J., Computational Fluid Dynamics: Principles and Applications (2005), Elsevier: Elsevier New York · Zbl 0995.76001
[42] Kovasznay, L. S.G., Laminar flow behind a two-dimensional grid, Proc. Camb. Philos. Soc., 44, 58-62 (1948) · Zbl 0030.22902
[43] Schlichting, H.; Gersten, K., Boundary-Layer Theory (2000), Springer: Springer Netherlands · Zbl 0940.76003
[44] Chen, L.; Shen, J.; Xu, C., A unstructured nodal spectral-element method for the Navier-Stokes equations, Commun. Comput. Phys. (2012) · Zbl 1373.76024
[45] Watari, M.; Tsutahara, M., Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E, 67, Article 036306 pp. (2003)
[46] Feng, Y.; Sagaut, P.; Tao, W.-Q., A three dimensional lattice model for thermal compressible flow on standard lattices, J. Comput. Phys., 303, 514-529 (2015) · Zbl 1349.76680
[47] Feng, Y.; Sagaut, P.; Tao, W.-Q., A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices, Comput. Fluids, 131, 45-55 (2016) · Zbl 1390.76713
[48] Shizgal, B., A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems, J. Comput. Phys., 41, 309-328 (1981) · Zbl 0459.65096
[49] Yang, J. Y.; Huang, J. C.; Tsuei, L., Numerical solutions of the nonlinear model Boltzmann equations, Proc. R. Soc. Lond. Ser. A, 448, 55-80 (1995) · Zbl 0821.76056
[50] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 429-466 (2000) · Zbl 0984.76070
[51] Guo, Z.; Zhao, T. S.; Shi, Y., Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E, 70, Article 066706 pp. (2004)
[52] De Rosis, A., Preconditioned lattice Boltzmann method for steady flows: A noncascaded central-moments-based approach, Phys. Rev. E, 96, Article 063308 pp. (2017)
[53] Hejranfar, K.; Saadat, M. H., Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows, Comput. Math. Appl., 76, 1427-1446 (2018) · Zbl 1434.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.