×

Bounds on multipartite concurrence and tangle. (English) Zbl 1348.81116

Summary: We present an analytical lower bound of multipartite concurrence based on the generalized Bloch representations of density matrices. It is shown that the lower bound can be used as an effective entanglement witness of genuine multipartite entanglement. Tight lower and upper bounds for multipartite tangles are also derived. Since the lower bounds depend on just part of the correlation tensors, the result is experimentally feasible.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] DiVincenzo, D.P.: Quantum computation. Science 270, 255-261 (1995) · Zbl 1226.68037 · doi:10.1126/science.270.5234.255
[3] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865-942 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[4] Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19-26 (2009) · doi:10.1038/nphys1157
[5] Sen, A., Sen, U.: Quantum advantage in communication networks. Phys. News 40, 17-32 (2010)
[6] Żukowsk, M., Zeilinger, A., Horne, M.A., Weinfurter, H.: Quest for GHZ states. Acta Phys. Pol. A 93, 187-195 (1998) · doi:10.12693/APhysPolA.93.187
[7] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[8] Demkowicz-Dobrzanski, R., Sen, A., Sen, U., Lewenstein, M.: Entanglement enhances security in quantum communication. Phys. Rev. A 80, 012311 (2009) · doi:10.1103/PhysRevA.80.012311
[9] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145-195 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[10] Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999) · doi:10.1103/PhysRevLett.83.648
[11] Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999) · doi:10.1103/PhysRevA.59.162
[12] Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010) · doi:10.1103/PhysRevLett.104.210501
[13] de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011) · doi:10.1103/PhysRevA.84.062306
[14] Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states. Phys. Rev. Lett. 108, 020502 (2012) · doi:10.1103/PhysRevLett.108.020502
[15] Jungnitsch, B., Moroder, T., Gühne, O.: Taming multiparticle entanglement. Phys. Rev. Lett. 106, 190502 (2011) · doi:10.1103/PhysRevLett.106.190502
[16] Aolita, L., Mintert, F.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006) · doi:10.1103/PhysRevLett.97.050501
[17] Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004) · doi:10.1103/PhysRevLett.93.230501
[18] Vicente, J.D.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624-638 (2007) · Zbl 1152.81835
[19] Vicente, J.D.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A Math. Theor. 41, 065309 (2008) · Zbl 1133.81014 · doi:10.1088/1751-8113/41/6/065309
[20] Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the Bloch representation of density matrices. Quantum Inf. Comput. 8, 773-790 (2008) · Zbl 1156.81011
[21] Li, M., Wang, J., Fei, S.M., Li-Jost, X.Q.: Quantum separability criterions for arbitrary dimensional multipartite states. Phys. Rev. A 89, 022325 (2014) · doi:10.1103/PhysRevA.89.022325
[22] Hassan, A.S.M., Joag, P.S.: Experimentally accessible geometric measure for entanglement in N-qubit pure states. Phys. Rev. A 77, 062334 (2008) · doi:10.1103/PhysRevA.77.062334
[23] Hassan, A.S.M., Joag, P.S.: Geometric measure for entanglement in N-qudit pure states. Phys. Rev. A 80, 042302 (2009) · doi:10.1103/PhysRevA.80.042302
[24] Li, M., Fei, S.M.: Bell inequality for multipartite qubit quantum system and the maximal violation. Phys. Rev. A 86, 052119 (2012) · doi:10.1103/PhysRevA.86.052119
[25] Li, M., Wang, J., Fei, S.M., Li-Jost, X.Q., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015) · doi:10.1103/PhysRevA.92.062338
[26] Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000) · doi:10.1103/PhysRevA.61.052306
[27] Osborne, T.J.: Entanglement measure for rank-2 mixed states. Phys. Rev. A 72, 022309 (2005) · doi:10.1103/PhysRevA.72.022309
[28] Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003) · doi:10.1103/PhysRevA.67.012307
[29] Li, M., Fei, S.M., Wang, Z.X.: Lower bound of concurrence for multipartite quantum states. J. Phys. A Math. Theor. 42, 145303 (2009) · Zbl 1162.81346 · doi:10.1088/1751-8113/42/14/145303
[30] Hassan, A.S.M., Joag, P.S.: Measurement-induced non-locality in an \[n\] n-partite quantum state. arXiv:1209.1884v2 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.