zbMATH — the first resource for mathematics

Bäcklund transformation, Lax pair and solitons of the \((2+1)\)-dimensional Davey-Stewartson-like equations with variable coefficients for the electrostatic wave packets. (English) Zbl 1420.35336
Summary: The \((2+1)\)-dimensional Davey-Stewartson-like equations with variable coefficients have the applications in the ultra-relativistic degenerate dense plasmas and Bose-Einstein condensates. Via the Bell polynomials and symbolic computation, the bilinear form, Bäcklund transformation and Lax pair for such equations are obtained. Based on the Hirota method, we construct the soliton solutions, analyze the elastic collisions with the constant and variable coefficients, and observe that solitons no longer keep rectilinear propagation and display different shapes because of the variable coefficients. Besides, localized excitations are derived through the variable separation.
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI
[1] Arkadiev, V. A.; Pogrebkov, A. K.; Polivanov, M. C., Inverse scattering transform method and soliton solutions for the Davey-Stewartson II equation, Phys D, 36, 189, (1989) · Zbl 0698.35150
[2] Bell, E. T., Exponential polynomials, Ann. Math, 35, 258, (1934) · Zbl 0009.21202
[3] Besse, C.; Mauser, N. J.; Stimming, H. P., Numerical study of the Davey-Stewartson system, ESAIM: Math. Model. Numer. Anal., 38, 1035, (2004) · Zbl 1080.65095
[4] Boiti, M.; Leon, J. P.; Martina, L.; Pempinelli, F., Scattering of localized solitons in the plane, Phys. Lett. A, 132, 432, (1988)
[5] Davey, A.; Stewartson, K., On three-dimensional packets of surfaces waves, Proc. Roy. Soc. London Ser. A, 338, 101, (1974) · Zbl 0282.76008
[6] Fokas, A. S.; Santini, P. M., Coherent structures in multidimensions, Phys. Rev. Lett., 63, 1329, (1989)
[7] Freeman, N. C., Soliton solutions of non-linear evolution equations, J. Appl. Math., 32, 125, (1984) · Zbl 0542.35079
[8] Ganesant, S.; Lakshmanani, M., Singularity-structure analysis and Hirota’s bilin- earisation of the Davey-Stewartson equation, J. Phys. A, 20, 1143, (1987)
[9] Gao, Y. T.; Tian, B., Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves, Phys. Lett. A, 349, 314, (2006)
[10] Gen, D. P.; Po, F. C.; Zhao, B. H., Exact solution for quantum Davey-Stewartson I system, Phys. Rev. Lett., 65, 3227, (1990) · Zbl 1050.81527
[11] Ghosh, S. S.; Sen, A.; Lakhina, G. S., Dromion solutions for nonlinear electron acoustic waves in space plasmas, Nonlinear Processes Geophys., 9, 463, (2002)
[12] Gilson, C.; Lambert, F.; Nimmo, J.; Willox, R., On the combinatorics of the Hirota D-operators, Proc. Roy. Soc. London Ser. A, 452, 223, (1996) · Zbl 0868.35101
[13] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dis- persive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett, 23, 142, (1973)
[14] Haus, H. A.; Wong, W. S., Solitons in optical communications, Rev. Mod. Phys., 68, 423, (1996)
[15] Hietarinta, J., One-dromion solutions for generic classes of equations, Phys. Lett. A, 149, 113, (1990)
[16] Hietarinta, J.; Hirota, R., Multidromion solutions to the Davey-Stewartson equation, Phys. Lett. A, 145, 237, (1990)
[17] Hirota, R., The direct method in soliton theory, (1980), Springer: Springer, Berlin
[18] Huang, G. X.; Deng, L.; Hang, C., Davey-Stewartson description of two-dimensional nonlinear excitations in Bose-Einstein condensates, Phys. Rev. E, 72, 036621, (2005)
[19] Jafari, H.; Alipour, M., Numerical Solution of the Davey-Stewartson Equations using Variational Iteration Method, World. Appl. Sci. J, 8, 814, (2010) · Zbl 1353.35265
[20] Lambert, F.; Springael, J., On a direct procedure for the disclosure of Lax pairs and Bäklund transformations, Chaos Solitons Fractals, 12, 2821, (2001) · Zbl 1005.37043
[21] Lambert, F.; Springael, J., Soliton equations and simple combinatorics, Acta. Appl. Math., 102, 147, (2008) · Zbl 1156.35078
[22] Leo, R. A.; Mancarella, G.; Soliani, G.; Solombrino, L., On the Painleve′ property of nonlinear field equations in 2+1 dimensions: The Davey-Stewartson system, J. Math. Phys., 29, 2666, (1988) · Zbl 0784.35111
[23] Levia, D.; Pillonia, L.; Santini, P. M., Bäcklund transformations for nonlinearevolu- tionequations in 2+1 dimensions, Phys. Lett. A, 81, 419, (1981)
[24] Li, Y., Bäcklund-Darboux transformations and melnikov analysis for Davey-Stewartson II equations, J. Nonlinear Sci., 10, 103, (2000) · Zbl 0963.35170
[25] Lou, S. Y., Dromions, dromion lattice, breather and instantons of the DS equation, Phys. Scr, 65, 7, (2002)
[26] Mafias, M.; Santini, P. M., Solutions of the Davey-Stewartson II equation with arbitrary rational localization and nontrivial interaction, Phys. Lett. A, 227, 325, (1997) · Zbl 0962.35510
[27] Matveev, V. B.; Salle, M. A., Darboux transformations and solitons, (1991), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0744.35045
[28] Mcconnell, M.; Fokas, A. S.; Pelloni, B., Localised coherent solutions of the DSI and DSII equations-a numerical study, Math. Compute. Simul., 69, 424, (2005) · Zbl 1119.65393
[29] Misra, A. P.; Shukla, P. K., Stability and evolution of wave packets in strongly coupled degenerate plasmas, Phys. Rev. E, 85, 026409, (2012)
[30] Misra, A. P.; Shukla, P. K., Modulational instability and nonlinear evolution of two- dimensional electrostatic wave packets in ultra-relativistic degenerate dense plasmas, Phys. Plasmas, 18, 042308, (2011)
[31] Misra, A. P.; Marklund, M.; Brodin, G.; Shukla, P. K., Stability of two-dimensional ion-acoustic wave packets inquantum plasmas, Phys. Plasmas, 18, 042102, (2011)
[32] Skupin, S.; Bang, O.; Edmundson, D.; Krolikowski, W., Stability of two-dimensional spatial solitons in nonlocal nonlinear media, Phys. Rev. E, 73, 066603, (2006)
[33] Tang, X. Y.; Lou, S. Y.; Zhang, Y., Localized excitations in (2+1)-dimensional systems, Phys. Rev. E, 66, 046601, (2002)
[34] Tian, B.; Gao, Y. T., Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers, Phys. Lett. A, 342, 228, (2005) · Zbl 1222.78043
[35] Wang, R. J.; Huang, Y. C., Exact solutions and excitations for the Davey-Stewartson equa- tions with nonlinear and gain terms, Eur. Phys. J. D, 57, 395, (2012)
[36] Wu, Y.; Deng, L., Ultraslow optical solitons in a cold four-state medium, Phys. Rev. Lett., 93, 1439041, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.