×

Global dynamics of an infinite dimensional epidemic model with nonlocal state structures. (English) Zbl 1402.37090

This paper studies the global dynamics of an infinite-dimensional epidemic model with nonlocal state structures. To describe a continuous state model, the population is partitioned into susceptible and recovered, and a state-structured SIR model is introduced. Under certain balance conditions and smooth conditions, a sharp threshold result characterizing the global dynamics in terms of basic reproduction number \(R_0\) is presented. The model is a general multi-stage one in which infected individuals are allowed to transfer among different stages and new infections are distributed into all stages with certain probability. The existence and local stability of stationary solutions such as the disease-free equilibrium and endemic equilibria are discussed. The authors establish the global stability of the disease-free equilibrium when \(R_0<1\) and uniform persistence when \(R_0>1\). Some examples are also provided to illustrate the theoretical results.

MSC:

37N25 Dynamical systems in biology
37L45 Hyperbolicity, Lyapunov functions for infinite-dimensional dissipative dynamical systems
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arendt, W.; Grabosch, A.; Greiner, G.; Groh, U.; Lotz, H. P.; Moustakas, U.; Nagel, R.; Neubrander, F.; Schlotterbeck, U., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, (1986), Springer-Verlag Berlin · Zbl 0585.47030
[2] Anselone, P. M.; Lee, J. W., Spectral properties of integral operators with nonnegative kernels, Linear Algebra Appl., 9, 67-87, (1974) · Zbl 0341.47033
[3] Arino, J.; van den Driessche, P., Disease spread in metapopulations, (Brunner, H.; Zhao, X.-Q.; Zou, X., Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48, (2006), Amer. Math. Soc. Providence), 1-12 · Zbl 1107.34042
[4] Bame, N.; Bowong, S.; Mbang, J.; Sallet, G.; Tewa, J. J., Global stability analysis for SEIS models with n latent classes, Math. Biosci. Eng., 5, 20-33, (2008) · Zbl 1155.34325
[5] Busenberg, S. N.; Iannelli, M.; Thieme, H. R., Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22, 1065-1080, (1991) · Zbl 0741.92015
[6] Bürger, R., Perturbations of positive semigroups and applications to population genetics, Math. Z., 197, 259-272, (1988) · Zbl 0618.47036
[7] Cazenave, T.; Haraux, A., An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and Its Applications, vol. 13, (1998), The Clarendon Press, Oxford University Press New York, Translated from the 1990 French original by Yvan Martel and revised by the authors · Zbl 0926.35049
[8] Cao, Y.; Qin, L.; Zhang, L.; Safrit, J.; Ho, D. D., Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection, N. Engl. J. Med., 332, 201-208, (1995)
[9] Coville, J., On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249, 2921-2953, (2010) · Zbl 1218.45002
[10] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382, (1990) · Zbl 0726.92018
[11] Engel, K.-J.; Nagel, R., One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, (2000), Springer-Verlag New York, With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt · Zbl 0952.47036
[12] Feng, Z.; Thieme, H. R., Endemic models with arbitrarily distributed periods of infection, I. fundamental properties of the model, SIAM J. Appl. Math., 61, 803-833, (2000) · Zbl 0991.92028
[13] Fife, P. C., Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath., vol. 28, (1979), Springer-Verlag New York · Zbl 0403.92004
[14] Guo, H.; Li, M. Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14, 259-284, (2006) · Zbl 1148.34039
[15] Guo, H.; Li, M. Y.; Shuai, Z., A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136, 2793-2802, (2008) · Zbl 1155.34028
[16] Guo, H. B.; Li, M. Y.; Shuai, Z., Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72, 261-279, (2012) · Zbl 1244.34075
[17] Hale, J. K., Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, (1988), American Mathematical Society Providence · Zbl 0642.58013
[18] Hyman, J. M.; Li, J.; Stanley, E. A., The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155, 77-109, (1999) · Zbl 0942.92030
[19] Hutson, V.; Martinez, S.; Mischaikow, K.; Vickers, G. T., The evolution of dispersal, J. Math. Biol., 47, 483-517, (2003) · Zbl 1052.92042
[20] Inaba, H., Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Discrete Contin. Dyn. Syst. Ser. B, 6, 69-96, (2006) · Zbl 1088.92049
[21] Kao, C.-Y.; Lou, Y.; Shen, W., Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26, 551-596, (2010) · Zbl 1187.35127
[22] Korobeinikov, A.; Maini, P. K., A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1, 57-60, (2004) · Zbl 1062.92061
[23] Li, M. Y.; Shuai, Z., Global stability of an epidemic model in a patchy environment, Can. Appl. Math. Q., 17, 175-187, (2009) · Zbl 1216.34054
[24] Li, M. Y.; Shuai, Z., Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248, 1-20, (2010) · Zbl 1190.34063
[25] Liu, W-m.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25, 359-380, (1987) · Zbl 0621.92014
[26] Medlock, J.; Kot, M., Spreading disease: integro-differential equations old and new, Math. Biosci., 184, 201-222, (2003) · Zbl 1036.92030
[27] Magal, P., Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations, 65, (2001), 35 pp · Zbl 0992.35019
[28] Magal, P.; Zhao, X. Q., Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 251-275, (2005) · Zbl 1128.37016
[29] Magal, P.; McCluskey, C. C.; Webb, G., Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89, 1109-1140, (2010) · Zbl 1208.34126
[30] Marek, I., Frobenius theory of positive operators: comparison theorems and applications, SIAM J. Appl. Math., 19, 607-628, (1970) · Zbl 0219.47022
[31] McCluskey, C. C., A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181, 1-16, (2003) · Zbl 1008.92032
[32] Olson, A. D.; Guiguet, M.; Zangerle, R., Evaluation of rapid progressors in HIV infection as an extreme phenotype, J. Acquir. Immune Defic. Syndr., 67, 15-21, (2014)
[33] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, (1983), Springer-Verlag New York · Zbl 0516.47023
[34] Porco, T. C.; Blower, S. M., Quantifying the intrinsic transmission dynamics of tuberculosis, Theor. Popul. Biol., 54, 117-132, (1998) · Zbl 0921.92018
[35] Sawashima, I., On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ., 15, 53-64, (1964) · Zbl 0138.07801
[36] Smith, H. L.; Thieme, H. R., Dynamical systems and population persistence, (2011), American Mathematical Society Providence · Zbl 1214.37002
[37] Shen, W.; Zhang, A., Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249, 747-795, (2010) · Zbl 1196.45002
[38] Thieme, H. R., Mathematics in population biology, (2003), Princeton University Press Princeton · Zbl 1054.92042
[39] Thieme, H. R., Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250, 3772-3801, (2011) · Zbl 1215.37052
[40] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48, (2002) · Zbl 1015.92036
[41] Wang, W.; Zhao, X.-Q., An epidemic model in a patchy environment, Math. Biosci., 190, 97-112, (2004) · Zbl 1048.92030
[42] Webb, G. F., Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A, 84, 1-2, 19-33, (1979) · Zbl 0414.34042
[43] Webb, G. F., Theory of nonlinear age-dependent population dynamics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 89, (1985), Marcel Dekker New York · Zbl 0555.92014
[44] Wairimu, J.; Sallet, G.; Ogana, W., Mathematical analysis of a large scale vector SIS malaria model in a patchy environment, Appl. Math., 5, 1913-1926, (2014)
[45] Zhao, X.-Q., Global attractivity and stability in some monotone discrete dynamical systems, Bull. Aust. Math. Soc., 53, 305-324, (1996) · Zbl 0847.34055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.