×

Unconventional phase field simulations of transforming materials with evolving microstructures. (English) Zbl 1293.74340

Summary: Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of material coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic properties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crystals and films with increased complexity. In this topical review, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some examples of specific microstructures will also be presented.

MSC:

74N15 Analysis of microstructure in solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Univ. Press, Oxford (2003) · Zbl 1109.74002
[2] Bhattacharya, K., James, R. D.: The material is the machine. Science 307, 53–54 (2005)
[3] Lagoudas, D. C.: Shape Memory Alloys, Modeling and Engineering Applications, Springer, New York (2008) · Zbl 1225.74005
[4] Nelson, C. T., Winchester, B., Zhang, Y., et al.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Letters 11, 828–834 (2011)
[5] Barman, S. R., Chakrabarti, A., Singh, S., et al.: Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi. Physical Review B 78, 134406 (2008)
[6] Tani, Y., Todaka. T., Enokizono, M.: Development of an engineering model for ferromagnetic shape memory alloys. Journal of Magnetism and Magnetic Materials 320, e743–e745 (2008)
[7] Marionia, M. A., OHandleyb, R. C., Allenb, S. M., et al.: The ferromagnetic shape-memory effect in NiMnGa. Journal of Magnetism and Magnetic Materials 290-291, 35–41 (2005)
[8] Oikawa, K., Wulff, L., Iijima, T., et al.: Promising ferromagnetic NiCoAl shape memory alloy system. Applied Physics Letters 79, 3290–3292 (2001)
[9] Pons, J., Cesari, E., Segu, C., et al.: Ferromagnetic shape memory alloys: Alternatives to NiMnGa. Materials Science and Engineering A 481–482, 5765 (2008)
[10] Zhao, T., Scholl, A., Zavaliche, F., et al.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Materials 5, 823–829 (2006)
[11] Chu, Y. H., Martin, L. W., Holcomb, M. B., et al.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Materials 7, 478–482 (2008)
[12] Eerenstein, W., Mathur, N. D., Scott, J. F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)
[13] Fiebig, M.: Revival of the magnetoelectric effect. Journal of Physics D 38, R123–R152 (2005)
[14] Fiebig, M., Lottermoser, T., Frohlich, D., et al.: Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)
[15] Lottermoser, T., Lonkai, T., Amann, U., et al.: Magnetic phase control by an electric field. Nature 430, 541–544 (2004)
[16] Ramesh, R., Spaldin, N. A.: Multiferroics: progress and prospects in thin films. Nature Materials 6, 21–29 (2007)
[17] Ball, J. M., James, R. D.: Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis 100, 13 (1987) · Zbl 0629.49020
[18] Li, J., Liu, D.: On ferroelectric crystals with engineered domain configurations. Journal of the Mechanics and Physics of Solids 52, 1719–1742 (2004) · Zbl 1059.74018
[19] Tsou, N. T., Huber, J. E.: Compatible domain structures and the poling of single crystal ferroelectrics. Mechanics of Materials 42, 740–753 (2010)
[20] Tsou, N. T., Potnis, P. R., Huber, J. E.: Classification of laminate domain patterns in ferroelectrics. Physical Review B 83, 184120 (2011)
[21] Khachaturyan, A. G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)
[22] Kohn, R. V.: The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics 3, 193–236 (1991) · Zbl 0825.73029
[23] Ball, J. M., James, R. D.: Proposed experimental tests of a theory of fine microstructure and the two well problem. Philosophical Transactions of the Royal Society of London Series A 338, 389–450 (1992) · Zbl 0758.73009
[24] Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals, Oxford University Press, Oxford (1998) · Zbl 0911.49010
[25] Ghosez, P., Junquera, P.: First-principles modeling of ferroelectric oxides nanostructures, In: M. Rieth and W. Schommers eds. Handbook Of Theoretical And Computational Nanotechnology, American Scientific Publisher USA (2006)
[26] Zhang, X., Chen, J. S., Osher, S.: A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Interaction and Multiscale Mechanics 1(2), 178–191 (2008)
[27] Ki, Y. T., Goldenfeld, N., Dantzig, J.: Computation of dendritic microstructures using a level set method. Physical Review E 62(2), 2471 (2000)
[28] Hou, T. Y., Rosakis, P., LeFloch, P.: A level-set approach to the computation of twinning and phase-transition dynamics. Journal of Computational Physics 150, 302–331 (1999) · Zbl 0936.74052
[29] Chen, L. Q.: Phase-field models for microstructure evolution. Annual Review of Materials Research 32, 113–140 (2002)
[30] Shu, Y. C., Yen, J. H.: Pattern formation in martensitic thin films. Applied Physics Letters 91, 021908 (2007)
[31] Shu, Y. C., Yen, J. H.: Multivariant model of martensitic microstructure in thin films. Acta Materialia 56, 3969–3981 (2008)
[32] Lei, C. H., Li, L. J., Shu, Y. C., et al.: Austenite-martensite interface in shape memory alloys. Applied Physics Letters 96, 141910 (2010)
[33] Shu, Y. C., Yen, J. H., Chen, H. Z., et al.: Constrained modeling of domain patterns in rhombohedral ferroelectrics. Applied Physics Letters 92, 052909 (2008)
[34] Li, L. J., Li, J. Y., Shu, Y. C., et al.: Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation. Applied Physics Letters 92, 172504 (2008)
[35] Li, L. J., Lei, C. H., Shu, Y. C., et al.: Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Materialia 59, 2648–2655 (2011)
[36] Jin, Y. M.: Domain microstructure evolution in magnetic shape memory alloys: Phase-field model and simulation. Acta Materialia 57, 2488–2495 (2009)
[37] Li, L. J., Li, J. Y., Shu, Y. C., et al.: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3. Applied Physics Letters 93, 192506 (2008)
[38] Li, L. J., Yang, Y., Shu, Y. C., et al.: Continuum theory and phase-field simulation of magnet oelectric effects in multiferroic bismuth ferrite. Journal of the Mechanics and Physics of Solids 58, 1613–1627 (2010) · Zbl 1200.74055
[39] Vasudevan, R. K., Liu, Y. Y., Li, J. Y., et al.: Nanoscale control of phase variants in strain-engineered BiFeO(3). Nano Letters 11, 3346–3354 (2011)
[40] Liu, Y. Y., Vasudevan, R. K., Pan, K., et al.: Controllingmagnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. Nanoscale 4, 3175–3183 (2012)
[41] Ahluwalia, R., Lookman, T., Saxena, A., et al.: Domain-size dependence of piezoelectric properties of ferroelectrics. Physical Review B 72, 014112 (2005)
[42] Cao, W.: Constructing Landau-Ginzburg-Devonshire type models for ferroelectric systems based on symmetry. Ferroelectrics 375, 28–35 (2008)
[43] Marton, P., Rychetsky, I., Hlinka, J.: Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model. Physics Review B 81, 144125 (2010)
[44] Hu, H. L., Chen, L. Q.: Three-dimensional computer simulation of ferroelectric domain formation. Journal of the American Ceramic Society 81, 492–500 (1998)
[45] Li, Y. L., Hu, S. Y., Liu, Z. K., et al.: Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters 78, 3878 (2001)
[46] Li, Y. L., Hu, S. Y., Liu, Z. K., et al.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Materialia 50, 395–411 (2002)
[47] Wang, J., Kamlah, M., Zhang, T. Y.: Phase field simulations of low dimensional ferroelectrics. Acta Mechanica 214, 49–59 (2010) · Zbl 1397.74073
[48] Chen, L. Q., Shen, J.: Applications of semi-implicit Fourierspectral method to phase field equations. Computer Physics Communications 108, 147–158 (1998) · Zbl 1017.65533
[49] Su, Y., Landis, C. M.: Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. Journal of the Mechanics and Physics of Solids 55, 280–305 (2007) · Zbl 1419.82074
[50] Schrade, D., Mueller, R., Xu, B. X., et al.: Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation. Computer Methods in Applied Mechanics and Engineering 196, 4365–4374 (2007) · Zbl 1173.74329
[51] Wang, J., Kamlah, M.: Three dimensional finite element modeling of polarization switching in a ferroelectric single domain with an impermeable notch. Smart Materials and Structures 18, 104008 (2009).
[52] Shu, Y. C., Lin, M. P., Wu, K. C.: Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials 36, 975–997 (2004)
[53] Dayal, K., Bhattacharya, K.: A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Materialia 55, 1907–1917 (2007)
[54] Dayal, K., Yang, L.: Effect of lattice orientation, surface modulation, and applied fields on free-surface domain microstructure in ferroelectrics. Acta Materialia 59, 6594–6603 (2011)
[55] Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Materialia 53, 185–198 (2005)
[56] Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta Materialia 53, 199–209 (2005)
[57] Xiao, Y., Bhattacharya, K.: Interaction of oxygen vacancies with domain walls and its impact on fatigue in ferroelectric thin films. In Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics Proc. SPIE, Vol. 5387 (2004)
[58] Zhang, Y. H., Li, J. Y., Fang, D. N.: Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal. Physical Review B 82, 064103 (2010)
[59] Hu, S. Y., Li, Y. L., Chen, L. Q.: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film: a phase-field model. Journal of Applied Physics 94, 2542 (2003)
[60] Wang, J., Zhang, T. Y.: Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Materialia 55, 2465–2477 (2007)
[61] Wang, J., Zhang, T. I.: Phase field simulations of a permeable crack parallel to the original polarization direction in a ferroelectric mono-domain. Engineering Fracture Mechanics 75, 4886–4897 (2008)
[62] Wang, J., Kamlah, M.: Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics 77, 3658–3669 (2010)
[63] Abdollahi, A., Arias, I.: Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Materialia 59, 4733–4746 (2011)
[64] Yang, L., Dayal, K.: Microstructure and stray electric fields at surface cracks in ferroelectrics. International Journal of Fracture 174, 17–27 (2012)
[65] Zhang, J. X., Chen, L. Q.: Phase-field model for ferromagnetic shape-memory alloys. Philosophical Magazine Letters 85, 533–541 (2005)
[66] Wu, P. P., Ma, X. Q., Zhang, J. X., et al.: Phase-field simulations of stress-strain behavior in ferromagnetic shape memory alloy Ni2MnGa. Journal of Applied Physics 104, 073906 (2008)
[67] Zhang, J. X., Chen, L. Q.: Phase-field simulations of magnetic field-induced strain in Ni2MnGa ferromagnetic shape memory alloy. Philosophical Magazine Letters 91, 2102–2116 (2011)
[68] Brown, W. F.: Micromagnetics. Wesley, New York (1963)
[69] Gilbert, T. L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics 40, 3443–3449 (2004)
[70] Landau, L. D., Lifshitz, E. M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935) · Zbl 0012.28501
[71] Wen, Y. H., Wang, Y., Chen, L. Q.: Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta Materialia 47, 4375–4386 (1999)
[72] Chen, L. Q., Khachaturyan, A. G.: Kinetics of virtual phase formation during precipitation of ordered intermetallics. Physical Review B 46, 5899–5905 (1992)
[73] Chen, L. Q., Khachaturyan, A. G.: Dynamics of simultaneous ordering and phase-separation and effect of long-range coulomb interactions. Physical Review Letters 70, 1477–1480 (1993)
[74] Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mechanics and Thermodynamics 5: 205–242 (1993) · Zbl 0780.73005
[75] Shu, Y. C., Bhattacharya, K.: Domain patterns and macroscopic behaviour of ferroelectric materials. Philosophical Magazine Part B 81, 2021–2054 (2001)
[76] Shu. Y. C., Yen, J. H., Hsieh, J.: Effect of depolarization and coercivity on actuation strains due to domain switching in barium titanate. Applied Physics Letters 90, 172902 (2007)
[77] Yang, L., Dayal, K.: Formulation of phase-field energies for microstructure in complex crystal structures. Applied Physics Letters 96, 081916 (2010).
[78] Shin, M. C., Chung, S. J., Lee, S. G., et al.: Growth and observation of domain structure of lead magnesium niobateLead titanate single crystals. Journal of Crystal Growth 263, 412–420 (2004)
[79] Bhattacharya, K.: Self-accommodation in martensite. Archive for Rational Mechanics and Analysis 120, 201 (1992) · Zbl 0771.73007
[80] Bhattacharya, K., Conti, S., Zanzotto, G., et al.: Crystal symmetry and the reversibility of martensitic transformations. Nature 428, 55–59 (2004)
[81] James, R. D., Zhang, Z.: In Magnetism and Structure in Functional Materials. Springer Series in Materials Science, Vol. 79, Springer, New York (2005)
[82] Cui, J., Chu, Y. S., Famodu, O. O., et al.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Materials 5, 286–290 (2006)
[83] Zhang, Z., James, R. D., Müller, S.: Energy barriers and hysteresis in martensitic phase transformations. Acta Materialia 57, 4332–4352 (2009)
[84] Ullakko, K., Huang, J. K., Kantner, C., et al.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters 69, 1966–1968 (1996)
[85] James, D., Wuttig, M.: Magnetostriction of Martensite, Philosophical Magazine A 77, 1273–1299 (1998)
[86] Tickle, R., James, R. D.: Magnetic and magnetomechanical properties of Ni2MnGa. Journal of Magnetism and Magnetic Materials 195, 627–638 (1999)
[87] Murray, S. J., Marioni, M., Allen, S. M., et al.: 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic NiMnGa. Applied Physics Letters 77, 886–888 (2000)
[88] Heczko, O., Sozinov, A., Ullakko, K.: Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Transactions on Magnetics 36, 3266–3268 (2000)
[89] Oikawa, K., Ota, T., Gejima, F., et al.: Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems. Materials Transactions 42, 2472–2475 (2001)
[90] Sozinov, A., Likhachev, A. A., Lanska, N., et al.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters 80, 1746–1748 (2002)
[91] Heczko, O.: Magnetic shape memory effect and magnetization reversal. Journal of Magnetism and Magnetic Materials 290–291(2), 787–794 (2005)
[92] Ma, Y. F., Li, J. Y.: Magnetization rotation and rearrangement of martensite variants in ferromagnetic shape memory alloys. Applied Physics Letters 90, 172504 (2007)
[93] Li, J. Y., Ma, Y. F.: Magnetoelastic modeling of magnetization rotation and variant rearrangement in ferromagnetic shape memory alloys. Mechanics of Materials 40, 1022–1036 (2008)
[94] Aharoni, A.: Introduction to the Theory of Ferromagnetism (The International Series of Monographs on Physics). Oxford Science Publications (2000)
[95] Chung, T. K., Keller, S., Carman, G. P.: Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Applied Physics Letters 94, 132501 (2009)
[96] Chung, T. K., Wong, K., Keller, S., et al.: Electrical control of magnetic remanent states in a magnetoelectric layered nanostructure. Journal of Applied Physics 106, 103914 (2009)
[97] Eerenstein, W., Morrison, F. D., Dho, J., et al.: Comment on ”epitaxial BiFeO3 multiferroic thin film heterostructure”. Science 307, 1203 (2005)
[98] Hur, N., Park, S., Sharma, P. A., et al.: Electric polarization reversal and memory in a multiferroic material inducedby magnetic fields. Nature 429, 392–395 (2004)
[99] Nan, C. W., Liu, G., Liu, Y., et al.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Physical Review Letters 94, 197203 (2005)
[100] Spaldin, N. A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)
[101] Wang, J., Neaton, J. B., Zheng, H., et al.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.