×

Hemorrhagic fever with renal syndrome in China: mechanisms on two distinct annual peaks and control measures. (English) Zbl 1383.92082

Summary: Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by several serotypes of hantavirus and 90% of all reported HFRS cases occur in China. However, the dynamics of such outbreak, particularly the characteristics of two distinct annual peaks in China, are not well understood. Here, we investigate several of the biologically plausible causes for the peaks in monthly HFRS cases, and find that the key factor is the interplay between periodic transmission rates and rodent periodic birth rate. Analysis of dynamical model reveals that vaccination plays a significant role in the control of HFRS in China. Sensitive analysis of different interventions demonstrates that integrating rodent culling and environmental management with the current vaccination program is effective for HFRS control. Our results suggest that for diseases from animals to human beings, the features of both animals and humans beings should be taken into account in the control and prevention strategies.

MSC:

92D30 Epidemiology
34K20 Stability theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Piechotowski, I., Brockmann, S. O., Schwarz, C., Winter, C. H., Ranft, U. and Pfaff, G., Emergence of hantavirus in South Germany: Rodents, climate and human infections, Parasitol Res.103 (2008) S131-S137.
[2] , Handbook of Epidemic Hemorrhagic Fever Prevention and Control (China People’s Health Publishing House, Beijing, 1998), pp. 63-80.
[3] Li, C. P., Cui, Z., Li, S. L., Magalhaes, R. J., Wang, B. L., Zhang, C., Sun, H. L., Li, C. Y., Huang, L. Y., Ma, J. and Zhang, W. Y., Association between hemorrhagic fever with renal syndrome epidemic and climate factors in Heilongjiang province, China, Amer. J. Trop. Med. Hygiene89 (2013) 1006-1012.
[4] Wu, G. H., Progress of epidemiological studies on hemorrhagic fever with renal syndrome in China, Chinese J. Epidemiol.24 (2003) 413-415.
[5] Zhang, Y. Z., Xiao, D. L., Wang, Y., Wang, H. X., Sun, L., Tao, X. X. and Qu, Y. G., The epidemic characteristics and preventive measures of hemorrhagic fever with renal syndrome in China, Chinese J. Epidemiol.25 (2004) 466-469.
[6] Li, L., Monthly periodic outbreak of hemorrhagic fever with renal syndrome in China, J. Biol. Syst.24 (2016) 519-533. · Zbl 1360.92101
[7] Sun, G.-Q.et al., Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun. Nonlinear Sci. Numer. Simulat.45 (2017) 235-244. · Zbl 1485.92154
[8] Liu, X. D., Jiang, B. F., Bi, P., Yang, W. and Liu, Q. Y., Prevalence of hemorrhagic fever with renal syndrome in mainland China: Analysis of national surveillance data, 2004-2009, Epidemiol. Infect.140 (2012) 851-857.
[9] Zhang, Y. Z., Zou, Y., Fu, Z. F. and Plyusnin, A., Hantavirus infections in humans and animals, China, Emerg. Infect. Diseases16 (2010) 1195-1203.
[10] Xiao, H., Tian, H. Y., Cazelles, B., Li, X. J., Tong, S. L., Gao, L. D., Qin, J. X., Lin, X. L., Liu, H. N. and Zhang, X. X., Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, mainland China, 1991-2010, PLoS Negl. Trop. Diseases7 (2013) 1-7.
[11] Xiao, H., Tian, H. Y., Gao, L. D., Liu, H. N., Duan, L. S., Basta, N., Cazelles, B., Li, X. J., Lin, X. L., Wu, H. W., Chen, B. Y., Yang, H. S., Xu, B. and Grenfell, B., Animal reservoir, natural and socioeconomic variations and the transmission of hemorrhagic fever with renal syndrome in Chenzhou, China, 2006-2010, PLoS Negl. Trop. Diseases8 (2014) 1-8.
[12] Tian, H. Y., Yu, P. B., Luis, A. D., Bi, P., Cazelles, B., Laine, M., Huang, S. Q., Ma, C. F., Zhou, S., Wei, J., Li, S., Lu, X. L., Qu, J. H., Dong, J. H., Tong, S. L., Wang, J. J., Grenfell, B. and Xu, B., Changes in rodent abundance and weather conditions as drivers of hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005-2012, PLoS Negl. Trop. Diseases9 (2015) 1-13.
[13] Fang, L. Q., Yan, L., Liang, S., de Vlas, S. J., Feng, D., Han, X. N., Zhao, W. J., Xu, B., Bian, L., Yang, H., Gong, P., Richardus, J. H. and Cao, W. C., Spatial analysis of hemorrhagic fever with renal syndrome in China, BMC Infect. Diseases6 (2006) 77.
[14] Fang, L. Q., Wang, X. J., Liang, S., Li, Y. L., Song, S. X., Zhang, W. Y., Qian, Q., Li, Y. P., Wei, L., Wang, Z. Q., Yang, H. and Cao, W. C., Spatiotemporal trends and climatic factors of hemorrhagic fever with renal syndrome epidemic in Shandong province, China, PLoS Negl. Trop. Diseases4 (2010) 1-10.
[15] Liu, X. D., Jiang, B. F., Gu, W. D. and Liu, Q. Y., Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China, BMC Infect. Diseases11 (2011) 331.
[16] Zhang, W. Y., Wang, L. Y., Liu, Y. X., Yin, W. W., Hu, W. B., Magalhaes, R. J., Ding, F., Sun, H. L., Zhou, H., Li, S. L., Haque, U., Tong, S. L., Glass, G. E. and Li, C. Y., Spatiotemporal transmission dynamics of hemorrhagic fever with renal syndrome in China, 2005-2012, PLoS Negl. Trop. Diseases8 (2014) 1-10.
[17] Allen, L. J. S., Langlais, M. and Phillips, C., The dynamics of two viral infections in a single host population with applications to hantavirus, Math. Biosci.186 (2003) 191-217. · Zbl 1033.92029
[18] Allen, L. J. S., McCormack, R. K. and Jonsson, C. B., Mathematical models for hantavirus infection in rodents, Bull. Math. Biol.68 (2006) 511-524. · Zbl 1334.92387
[19] Sauvage, F., Langlais, M., Yoccoz, N. G. and Pontier, D., Modelling hantavirus in fluctuating populations of bank roles: The role of indirect transmission on virus persistence, J. Anim. Ecol.72 (2003) 1-13.
[20] Barbera, E., Curro, C. and Valenti, G., A hyperbolic reaction-diffusion model for the hantavirus infection, Math. Meth. Appl. Sci.31 (2008) 481-499. · Zbl 1180.35340
[21] China Ministry of Health, National Health and Family Planning Disease Control and Prevention, Prevention and control of infectious diseases, http://www.nhfpc.gov.cn/jkj/s2907/list.shtml.
[22] Huang, X., Yin, H., Yan, L., Wang, X. and Wang, S., Epidemiologic characteristics of hemorrhagic fever with renal syndrome in Mainland China from 2006-2010, Western Pac. Surveill. Resp. J.3 (2012) 12-18.
[23] The introduction of hemorrhagic fever with renal syndrome, the materials for training of China Preventive Medicine Association (in Chinese).
[24] Yakob, L., Williams, G. M., Gray, D. J., Halton, K., Solon, J. A. and Clements, A. C. A., Slaving and release in co-infection control, Parasit. Vect.6 (2013) e157.
[25] National Bureau of Statistics of China, China Statistical Yearbook (China Statistics Press, Beijing, China, 2013), http://www.stats.gov.cn/tjsj/ndsj/.
[26] Zheng, Z. M., Jiang, Z. K. and Chen, A. G., Rodents (Shanghai Jiaotong University Press, Shanghai, 2008).
[27] Haario, H., Laine, M., Mira, A. and Saksman, E., Dram: Efficient adaptive MCMC, Statist. Comput.16 (2006) 339-354.
[28] Gamerman, D. and Lopes, H. F., Markov Chain Monto Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. (Taylor and Francis Group, London, 2006). · Zbl 1137.62011
[29] Wang, F., Wang, H. Y., Xu, K., Wu, J. H. and Jia, X. H., Characterizing information diffusion in online social networks with linear diffusive model, in 33rd Int. Conf. Distributed Computing Systems (ICDCS), , (2013), pp. 307-316.
[30] Cazelles, B., Chavez, M., de Magny, G. Constantin, Guegan, J. F. and Hales, S., Time dependent spectral analysis of epidemiological time series with wavelets, J. Roy. Soc. Interface4 (2007) 625-636.
[31] Cazelles, B., Cazelles, K. and Chavez, M., Wavelet analysis in ecology and epidemiology: Impact of statistical tests, J. Roy. Soc. Interface11 (2014) 20130585.
[32] Xiao, Y., Tang, S. and Wu, J., Media impact switching surface during an infectious disease outbreak, Sci. Rep.5 (2015) 7838.
[33] Song, L., Ma, C., Li, Q., Fan, A. and Wang, K., Global dynamics of a viral infection model with full logistic terms and antivirus treatments, Int. J. Biomath.10 (2017) 1750012. · Zbl 1356.34055
[34] Sharma, S. and Samanta, G. P., Analysis of a hand-foot-mouth disease model, Int. J. Biomath.10 (2017) 1750016. · Zbl 1355.92127
[35] Sun, G.-Q. and Zhang, Z.-K., Global stability for a sheep brucellosis model with immigration, Appl. Math. Comput.246 (2014) 336-345. · Zbl 1338.92141
[36] Modnak, C., A model of cholera transmission with hyperinfectivity and its optimal vaccination control, Int. J. Biomath.10 (2017) 1750084. · Zbl 1376.92067
[37] Xing, Y., Song, L., Sun, G.-Q., Jin, Z. and Zhang, J., Assessing reappearance factors of H7N9 avian influenza in China, Appl. Math. Comput.309 (2017) 192-204. · Zbl 1411.92297
[38] Li, Q., Lu, F., Dai, C., Fan, M., Wang, W. and Wang, K., Simulating the potential role of media coverage and infected bats in the 2014 Ebola outbreak, J. Theor. Biol.412 (2017) 123-129. · Zbl 1368.92183
[39] Chib, S. and Greenberg, E., Understanding the Metropolis-Hastings algorithm, Amer. Statist.49 (1995) 327-335.
[40] Mira, A., On Metropolis-Hastings algorithms with delayed rejection, Metron59 (2001) 231-241. · Zbl 0998.65502
[41] Robert, C. and Casella, G., Monte Carlo Statistical Methods (Springer, 2014). · Zbl 1096.62003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.