×

zbMATH — the first resource for mathematics

Phase retrievable projective representation frames for finite abelian groups. (English) Zbl 1440.42156
Summary: We consider the problem of characterizing projective representations that admit frame vectors with the maximal span property, a property that allows for an algebraic recovering for the phase-retrieval problem. For a given multiplier \(\mu\) of a finite abelian group \(G\), we show that the representation dimension of any irreducible \(\mu\)-projective representation of \(G\) is exactly the rank of the symmetric multiplier matrix associated with \(\mu\). With the help of this result we are able to prove that every irreducible \(\mu\)-projective representation of a finite abelian group \(G\) admits a frame vector with the maximal span property, and obtain a complete characterization for all such frame vectors. Consequently the complement of the set of all the maximal span frame vectors for any projective unitary representation of any finite abelian group is Zariski-closed. These generalize some of the recent results about phase-retrieval with Gabor (or STFT) measurements.

MSC:
42C15 General harmonic expansions, frames
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
20C25 Projective representations and multipliers
20K01 Finite abelian groups
Software:
PhaseLift
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexeev, B.; Bandeira, AS; Fickus, M.; Mixon, DG, Phase retrieval with polarization, SIAM J. Imaging Sci., 7, 35-66, (2014) · Zbl 1304.49071
[2] Backhouse, NB; Bradley, CJ, Projective representations of Abelian groups, Proc. Am. Math. Soc., 36, 260-266, (1972) · Zbl 0256.22009
[3] Balan, R.: Stability of phase retrievable frames. In: Proceedings of SPIE, Wavelets and Sparsity XV, 88580H (2013)
[4] Balan, R.; Wang, Y., Invertibility and robustness of phaseless reconstruction, Appl. Comput. Harmon. Anal., 38, 469-488, (2015) · Zbl 1337.42032
[5] Balan, R.; Zou, D., On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem, Linear Algebra Appl., 496, 152-181, (2016) · Zbl 1332.15042
[6] Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction from the absolute value of the frame coefficients. In: Proceedings of SPIE, vol. 5914, pp. 1-8 (2005)
[7] Balan, R.; Casazza, P.; Edidin, D., On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 20, 345-356, (2006) · Zbl 1090.94006
[8] Balan, R.; Casazza, PG; Edidin, D., Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem, IEEE Signal Process. Lett., 14, 341-345, (2007)
[9] Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast algorithms for signal reconstruction without phase. In: Proceedings of SPIE-Wavelets XII, San Diego, vol. 6701, pp. 670111920-670111932 (2007)
[10] Balan, R.; Bodmann, BG; Casazza, PG; Edidin, D., Painless reconstruction from magnitudes of frame vectors, J. Fourier Anal. Appl., 15, 488-501, (2009) · Zbl 1181.42032
[11] Bandeira, AS; Cahill, J.; Mixon, DG; Nelson, AA, Saving phase: injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal., 37, 106-125, (2014) · Zbl 1305.90330
[12] Bandeira, AS; Chen, Y.; Mixon, DG, Phase retrieval from power spectra of masked signals, Inf. Inference, 3, 83-102, (2014) · Zbl 1308.94031
[13] Bendory, T., Eldar, Y.C.: A least squares approach for stable phase retrieval from short-time Fourier transform magnitude, preprint arXiv:1510.00920 (2015)
[14] Bodmann, BG; Hammen, N., Stable phase retrieval with low-redundancy frames, Adv. Comput. Math., 41, 317-33, (2015) · Zbl 1316.42035
[15] Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for Linear Reconstruction Without Phase. CISS Meeting, Princeton, NJ (2008) · Zbl 1181.42032
[16] Bojarovska, I.; Flinth, A., Phase retrieval from Gabor measurements, J. Fourier Anal. Appl., 22, 542-567, (2016) · Zbl 1341.42049
[17] Candès, EJ; Li, X., Solving quadratic equations via PhaseLift when there are about as many equations as unknowns, Found. Comput. Math., 14, 1017-1026, (2014) · Zbl 1312.90054
[18] Candès, EJ; Eldar, YC; Strohmer, T.; Voroninski, V., Phase retrieval via matrix completion, SIAM J. Imaging Sci., 6, 199-225, (2013) · Zbl 1280.49052
[19] Candès, EJ; Strohmer, T.; Voroninski, V., PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., 66, 1241-1274, (2013) · Zbl 1335.94013
[20] Cheng, C., A character theory for projective representations of finite groups, Linear Algebra Appl., 469, 230-242, (2015) · Zbl 1312.20005
[21] Cheng, C., Fu, J.: On the rings of projective characters of Abelian groups and Dihedral groups, preprint (2016)
[22] Conca, A.; Edidin, D.; Hering, M.; Vinzant, C., An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal., 38, 346-356, (2015) · Zbl 1354.42003
[23] Eldar, YC; Sidorenko, P.; Mixon, DG; Barel, S.; Cohen, O., Sparse phase retrieval from short-time Fourier measurements, IEEE Signal Process. Lett., 22, 638-642, (2015)
[24] Eldar, Y.C., Hammen, N., Mixon, D.: Recent advances in phase retrieval. In: IEEE Signal Processing Magazine, pp. 158-162 (September 2016)
[25] Fickus, M.; Mixon, DG; Nelson, AA; Wang, Y., Phase retrieval from very few measurements, Linear Algebra Appl., 449, 475-499, (2014) · Zbl 1286.42043
[26] Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments. arXiv:1510.07713
[27] Karpilovsky, G.: The Schur Multiplier. London Mathematical Society Monographs. Clarendon Press, Oxford (1987) · Zbl 0619.20001
[28] Li, L.; Cheng, C.; Han, D.; Sun, Q.; Shi, G., Phase retrieval from multiple-window short-time Fourier measurements, IEEE Signal Process. Lett., 24, 372-376, (2017)
[29] Nawab, SH; Quatieri, TF; Lim, JS, Signal reconstruction from short-time Fourier transform magnitude, IEEE Trans. Acoust. Speech Signal Process., 31, 986-998, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.