×

zbMATH — the first resource for mathematics

Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space. (English) Zbl 1380.53025
Summary: Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this work, we study these class of surfaces in the 3-dimensional Minkowski space \(\mathbb{L}^{3}\). We achieve a complete classification of spacelike generalized constant ratio surfaces in \(\mathbb{L}^{3}\).

MSC:
53B25 Local submanifolds
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boyadzhiev, K N, Equiangular surfaces, self-similar surfaces, and the geometry of seashells., College Math J, 38, 265-271, (2007) · Zbl 1245.53009
[2] Chen B Y. Geometry of Submanifolds. New York: Marcel Dekker, 1973 · Zbl 0262.53036
[3] Chen, B Y, Constant-ratio hypersurfaces., Soochow J Math, 27, 353-362, (2001) · Zbl 1007.53006
[4] Dillen, F; Fastenakels, J; Veken, J, Surfaces in S\^{2} ×R with a canonical principal direction., Ann Global Anal Geom, 35, 381-396, (2009) · Zbl 1176.53031
[5] Dillen, F; Fastenakels, J; Veken, J; Vrancken, L, Constant angle surfaces in S\^{2}×R., Monatsh Math, 152, 89-96, (2007) · Zbl 1140.53006
[6] Dillen, F; Munteanu, M I, Constant angle surfaces in ℍ_{2} × ℝ., Bull Braz Math Soc, 40, 85-97, (2009) · Zbl 1173.53012
[7] Dillen, F; Munteanu, M I; Nistor, A I, Canonical coordinates and principal directions for surfaces in ℍ\^{2} × ℝ., Taiwanese J Math, 15, 2265-2289, (2011) · Zbl 1241.53010
[8] Dillen, F; Munteanu, M I; Veken, J; Vrancken, L, Constant angle surfaces in a warped product, Balkan J Geom Appl, 16, 35-47, (2011) · Zbl 1228.53021
[9] Fastenakels, J; Munteanu, M I; Veken, J, Constant angle surfaces in the Heisenberg group., Acta Math Sin (Engl Ser), 27, 747-756, (2011) · Zbl 1218.53019
[10] Fu, Y; Munteanu, M I, Generalized constant ratio surfaces in E\^{3}., Bull Braz Math Soc (N S), 45, 1-18, (2014) · Zbl 1294.11113
[11] Fu, Y; Nistor, A I, Constant angle property and canonical principal directions for surfaces in M\^{2}(\(c\)) × ℝ_{1}., Mediterr J Math, 10, 1035-1049, (2013) · Zbl 1277.53018
[12] Fu, Y; Wang, X S, Classification of timelike constant slope surfaces in 3-dimensional Minkowski space., Results Math, 63, 1095-1108, (2012) · Zbl 1384.53017
[13] Fu, Y; Yang, D, On constant slope spacelike surfaces in 3-dimensional Minkowski space., J Math Anal Appl, 385, 208-220, (2012) · Zbl 1226.53012
[14] Garnica, E; Palmas, O; Ruiz-Hernández, G, Hypersurfaces with a canonical principal direction., Differential Geom Appl, 30, 382-391, (2012) · Zbl 1251.53012
[15] Haesen, S; Nistor, A I; Verstraelen, L, On growth and form and geometry., I. Kragujevac J Math, 36, 5-23, (2012) · Zbl 1349.53032
[16] Hano, J; Nomizu, K, Surfaces of revolution with constant Mean curvature in Lorentz-Minkowski space., Tohoku Math J, 32, 427-437, (1984) · Zbl 0535.53002
[17] López, R; Munteanu, M I, On the geometry of constant angle surfaces in sol_{3}., Kyushu J Math, 65, 237-249, (2011) · Zbl 1236.53011
[18] Munteanu, M I, From Golden spirals to constant slope surfaces., J Math Phys, 51, 073507, (2010) · Zbl 1311.14037
[19] Munteanu, M I; Nistor, A I, A new approach on constant angle surfaces in E\^{3}., Turkish J Math, 33, 169-178, (2009)
[20] Munteanu, M I; Nistor, A I, Complete classification of surfaces with a canonical principal direction in the Euclidean space E\^{3}., Cent Eur J Math, 9, 378-389, (2011) · Zbl 1222.53009
[21] Nistor, A I, A note on spacelike surfaces in Minkowski 3-space., Filomat, 7, 843-849, (2013) · Zbl 1451.53095
[22] O’Neill B. Semi-Riemannian Geometry with Applications to Relativity, New York: Academic Press, 1982 · Zbl 0531.53051
[23] Tojeiro, R, On a class of hypersurfaces in S\^{n} × ℝ and ℍ\^{n} × ℝ., Bull Braz Math Soc, 41, 199-209, (2010) · Zbl 1218.53061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.