×

Confidence intervals for ratio of two Poisson rates using the method of variance estimates recovery. (English) Zbl 1306.65089

Summary: Inference based on ratio of two independent Poisson rates is common in epidemiological studies. We study the performance of a variety of unconditional method of variance estimates recovery (MOVER) methods of combining separate confidence intervals for two single Poisson rates to form a confidence interval for their ratio. We consider confidence intervals derived from (1) the Fieller’s theorem, (2) the logarithmic transformation with the delta method and (3) the substitution method. We evaluate the performance of 13 such types of confidence intervals by comparing their empirical coverage probabilities, empirical confidence widths, ratios of mesial non-coverage probability and total non-coverage probabilities. Our simulation results suggest that the MOVER Rao score confidence intervals based on the Fieller’s theorem and the substitution method are preferable. We provide two applications to construct confidence intervals for the ratio of two Poisson rates in a breast cancer study and in a study that examines coronary heart diseases incidences among post menopausal women treated with or without hormones.

MSC:

62-08 Computational methods for problems pertaining to statistics
62F25 Parametric tolerance and confidence regions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altman DG, Machin D, Bryant TN et al (2000) Statistics with confidence, 2nd edn. BMJ Books, Bristol
[2] Bartlett MS (1953) Approximate confidence intervals II. More than one unknown parameter. Biometrika 40(3):306-317 · Zbl 0053.10404
[3] Brown LD, Cai TT, Dasgupta A (2003) Interval estimation in exponential families. Statistica Sinica 13(1):19-49 · Zbl 1017.62027
[4] Byrne J, Kabaila P (2005) Comparison of Poisson confidence intervals. Commun Stat Theory Methods 34(3):545-556 · Zbl 1123.62027 · doi:10.1081/STA-200052109
[5] Donner A, Zou GY (2002) Interval estimation for a difference between intraclass kappa statistics. Biometrics 58(1):209-215 · Zbl 1209.62042 · doi:10.1111/j.0006-341X.2002.00209.x
[6] Donner A, Zou GY (2010) Closed-form confidence intervals for function of the normal mean and standard deviation. Stat Methods Med Res 8:1-12
[7] Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions. Wiley, New Jersey · Zbl 1034.62113 · doi:10.1002/0471445428
[8] Graham PL, Mengersen K, Morton AP (2003) Confidence limits for the ratio of two rates based on likelihood scores: non-iterative method. Stat Med 22(12):2071-2083 · doi:10.1002/sim.1405
[9] Gu KX, Ng HKT, Tang ML et al (2008) Testing the ratio of two Poisson rates. Biometr J 50(2):283-298 · doi:10.1002/bimj.200710403
[10] Haight FA (1967) Handbook of the Poisson distribution. Wiley, New York · Zbl 0152.37706
[11] Krishnamoorthy K, Thomson J (2004) A more powerful test for comparing two Poisson means. J Stat Plan Inference 119(1):23-35 · Zbl 1031.62013 · doi:10.1016/S0378-3758(02)00408-1
[12] Li Y, Koval JJ, Donner A, Zou GY (2010) Interval estimation for the area under the receiver operating characteristic curve when data are subject to error. Stat Med 29(24):2521-2531 · Zbl 1207.68266 · doi:10.1002/sim.4015
[13] Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857-872 · doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
[14] Newcombe RG (2012) Confidence intervals for proportions and related measures of effect size. Chapman & Hall/CRC Biostatistics Series · Zbl 1263.62089
[15] Ng HKT, Gu K, Tang ML (2007) A comparative study of tests for the difference of the two Poisson means. Comput Stat Data Anal 51(6):3085-3099 · Zbl 1161.62319 · doi:10.1016/j.csda.2006.02.004
[16] Ng HKT, Tang ML (2005) Testing the equality of two Poisson means using the rate ratio. Stat Med 24(6): 955-965 · doi:10.1002/sim.1949
[17] Price RM, Bonett DG (2000) Estimating the ratio of two Poisson rates. Comput Stat Data Anal 34(3): 345-356 · Zbl 1061.62523 · doi:10.1016/S0167-9473(99)00100-0
[18] Rothman KJ, Greenland S (1998) Modern epidemiology, 2nd edn. Lippincott-Raven, Philadelphia
[19] Sahai H, Khurshid A (1993) Confidence intervals for the ratio of two Poisson means. Math Sci 18(1):43-50 · Zbl 0770.62022
[20] Singer J (2010) Letter to the editor. Construction of confidence limits about effect measures: a general approach, by Zou GY, Donner A (eds) Statistics in Medicine 2008; 27: 1693-1702. Statistics in Medicine 29(16):1757-1759 · Zbl 1209.62042
[21] Stamey J, Hamilton C (2006) A note on confidence intervals for a linear function of Poisson rates. Commun Stat Simul Comput 35(4):849-856 · Zbl 1105.62037 · doi:10.1080/03610910600880195
[22] Stampfer MJ, Willett WC (1985) A prospective study of postmenopausal estrogen therapy and coronary heart disease. N Engl J Med 313(17):1044-1049 · doi:10.1056/NEJM198510243131703
[23] Stapleton JH (1995) Linear statistical models. Wiley, New York · Zbl 0854.62059 · doi:10.1002/9780470316924
[24] Swift MB (2009) Comparison of confidence intervals for a Poisson mean-further considerations. Commun Stat Theory Methods 38(5):748-759 · Zbl 1159.62015 · doi:10.1080/03610920802255856
[25] Tang ML, Ling MH, Tian GL (2009) Exact and approximate unconditional confidence intervals for proportion difference in the presence of incomplete data. Stat Med 28(4):625-641 · doi:10.1002/sim.3490
[26] Tang ML, Ng HKT (2004) Comment on: confidence limits for the ratio of two rates based on likelihood scores: non-iterative method. Stat Med 23(4):685-691 · doi:10.1002/sim.1683
[27] Zou GY (2008) On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol 168(2):212-224 · doi:10.1093/aje/kwn104
[28] Zou GY, Donner A (2008) Construction of confidence limits about effect measures: a general approach. Stat Med 27(10):1693-1702 · doi:10.1002/sim.3095
[29] Zou, GY; Donner, A.; Schuster, H. (ed.); Metzger, W. (ed.), A generalization of Fiellers theorem for ratios of non-normal variables and some practical applications, 197-216 (2010), London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.