×

A brief review of neural networks based learning and control and their applications for robots. (English) Zbl 1377.93079

Summary: As an imitation of the biological nervous systems, neural networks (NNs), which have been characterized as powerful learning tools, are employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification, and pattern recognition. This article aims to bring a brief review of the state-of-the-art NNs for the complex nonlinear systems by summarizing recent progress of NNs in both theory and practical applications. Specifically, this survey also reviews a number of NN based robot control algorithms, including NN based manipulator control, NN based human-robot interaction, and NN based cognitive control.

MSC:

93C10 Nonlinear systems in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
93C85 Automated systems (robots, etc.) in control theory

Software:

ImageNet; darch; AlexNet
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gruau, F.; Whitley, D.; Pyeatt, L., A comparison between cellular encoding and direct encoding for genetic neural networks, Proceedings of the 1st annual conference on genetic programming
[2] de Garis, H., An artificial brain ATR’s CAM-Brain Project aims to build/evolve an artificial brain with a million neural net modules inside a trillion cell Cellular Automata Machine, New Generation Computing, 12, 2, 215-221 (1994) · doi:10.1007/BF03037343
[3] McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology, 5, 4, 115-133 (1943) · Zbl 0063.03860 · doi:10.1007/BF02478259
[4] Yang, C.; Ge, S. S.; Xiang, C.; Chai, T.; Lee, T. H., Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach, IEEE Transactions on Neural Networks and Learning Systems, 19, 11, 1873-1886 (2008) · doi:10.1109/TNN.2008.2003290
[5] Kumar, R.; Aggarwal, R. K.; Sharma, J. D., Energy analysis of a building using artificial neural network: A review, Energy and Buildings, 65, 352-358 (2013) · doi:10.1016/j.enbuild.2013.06.007
[6] Alippi, C.; De Russis, C.; Piuri, V., A neural-network based control solution to air-fuel ratio control for automotive fuel-injection systems, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 33, 2, 259-268 (2003) · doi:10.1109/TSMCC.2003.814035
[7] Azoff, E. M., Neural network time series forecasting of financial markets (1994), John Wiley & Sons, Inc
[8] Fister, I.; Suganthan, P. N.; Fister, J.; Kamal, S. M.; Al-Marzouki, F. M.; Perc, M. z.; Strnad, D., Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution, Nonlinear Dynamics, 84, 2, 895-914 (2016) · doi:10.1007/s11071-015-2537-8
[9] Zhang, Y.; Li, S.; Guo, H., A type of biased consensus-based distributed neural network for path planning, Nonlinear Dynamics, 89, 3, 1803-1815 (2017) · Zbl 1375.34044 · doi:10.1007/s11071-017-3553-7
[10] Shi, X.; Wang, Z.; Han, L., Finite-time stochastic synchronization of time-delay neural networks with noise disturbance, Nonlinear Dynamics, 88, 4, 2747-2755 (2017) · Zbl 1398.93290 · doi:10.1007/s11071-017-3408-2
[11] He, P.; Li, Y., H∞ synchronization of coupled reaction-diffusion neural networks with mixed delays, Complexity, 21, S2, 42-53 (2016) · doi:10.1002/cplx.21782
[12] Tu, Z.; Cao, J.; Alsaedi, A.; Alsaadi, F. E.; Hayat, T., Global Lagrange stability of complex-valued neural networks of neutral type with time-varying delays, Complexity, 21, S2, 438-450 (2016) · doi:10.1002/cplx.21823
[13] Wang, C.; Guo, S.; Xu, Y., Formation of autapse connected to neuron and its biological function, Complexity, 2017 (2017) · Zbl 1367.92025 · doi:10.1155/2017/5436737
[14] Rubio, J. D. J.; Elias, I.; Cruz, D. R.; Pacheco, J., Uniform stable radial basis function neural network for the prediction in two mechatronic processes, Neurocomputing, 227, 122-130 (2017) · doi:10.1016/j.neucom.2016.08.109
[15] Rubio, J. d., USNFIS: Uniform stable neuro fuzzy inference system, Neurocomputing, 262, 57-66 (2017) · doi:10.1016/j.neucom.2016.08.150
[16] Liu, Q.; Yin, J.; Leung, V. C. M.; Zhai, J.-H.; Cai, Z.; Lin, J., Applying a new localized generalization error model to design neural networks trained with extreme learning machine, Neural Computing and Applications, 1-8 (2014) · doi:10.1007/s00521-014-1549-5
[17] de Jesús, R. J., Interpolation neural network model of a manufactured wind turbine, Neural Computing and Applications, 1-12 (2016) · doi:10.1007/s00521-015-2169-4
[18] Mu, C.; Wang, D., Neural-network-based adaptive guaranteed cost control of nonlinear dynamical systems with matched uncertainties, Neurocomputing, 245, 46-54 (2017) · doi:10.1016/j.neucom.2017.03.047
[19] Lin, Z.; Ma, D.; Meng, J.; Chen, L., Relative ordering learning in spiking neural network for pattern recognition, Neurocomputing (2017) · doi:10.1016/j.neucom.2017.05.009
[20] Yu, J.; Sang, J.; Gao, X., Machine learning and signal processing for big multimedia analysis, Neurocomputing, 257, 1-4 (2017) · doi:10.1016/j.neucom.2017.01.091
[21] Zhang, T.; Ge, S. S.; Hang, C. C., Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica, 36, 12, 1835-1846 (2000) · Zbl 0976.93046 · doi:10.1016/S0005-1098(00)00116-3
[22] Ge, S. S.; Zhang, T., Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback, IEEE Transactions on Neural Networks and Learning Systems, 14, 4, 900-918 (2003) · doi:10.1109/TNN.2003.813823
[23] Ge, S. S.; Yang, C.; Lee, T. H., Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time, IEEE Transactions on Neural Networks and Learning Systems, 19, 9, 1599-1614 (2008) · doi:10.1109/tnn.2008.2000446
[24] Lewis, F. W.; Jagannathan, S.; Yesildirak, A., Neural network control of robot manipulators and non-linear systems (1998), CRC Press
[25] Jagannathan, S.; Lewis, F. L., Identification of nonlinear dynamical systems using multilayered neural networks, Automatica, 32, 12, 1707-1712 (1996) · Zbl 0879.93010 · doi:10.1016/S0005-1098(96)80007-0
[26] Vrabie, D.; Lewis, F., Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems, Neural Networks, 22, 3, 237-246 (2009) · Zbl 1335.93068 · doi:10.1016/j.neunet.2009.03.008
[27] Yang, C.; Ge, S. S.; Lee, T. H., Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions, Automatica, 45, 1, 270-276 (2009) · Zbl 1154.93377 · doi:10.1016/j.automatica.2008.07.009
[28] Yang, C.; Li, Z.; Li, J., Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, IEEE Transactions on Cybernetics, 43, 1, 24-36 (2013) · doi:10.1109/TSMCB.2012.2198813
[29] Jiang, Y.; Yang, C.; Ma, H., A review of fuzzy logic and neural network based intelligent control design for discrete-time systems, Discrete Dynamics in Nature and Society (2016) · Zbl 1417.93191 · doi:10.1155/2016/7217364
[30] Jiang, Y.; Yang, C.; Dai, S.-L.; Ren, B., Deterministic learning enhanced neutral network control of unmanned helicopter, International Journal of Advanced Robotic Systems, 13, 6, 1-12 (2016) · doi:10.1177/1729881416671118
[31] Jiang, Y.; Liu, Z.; Chen, C.; Zhang, Y., Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity, Nonlinear Dynamics, 81, 3, 1301-1314 (2015) · Zbl 1348.93123 · doi:10.1007/s11071-015-2070-9
[32] https://stemcellthailand.org/neurons-definition-function-neurotransmitters/
[33] Defoort, M.; Floquet, T.; Kökösy, A.; Perruquetti, W., Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Transactions on Industrial Electronics, 55, 11, 3944-3953 (2008) · doi:10.1109/TIE.2008.2002717
[34] Liu, X.; Yang, C.; Chen, Z.; Wang, M.; Su, C., Neuro-adaptive observer based control of flexible joint robot, Neurocomputing (2017) · doi:10.1016/j.neucom.2017.05.011
[35] Hamerlain, F.; Floquet, T.; Perruquetti, W., Experimental tests of a sliding mode controller for trajectory tracking of a car-like mobile robot, Robotica, 32, 1, 63-76 (2014) · doi:10.1017/S0263574713000623
[36] de Jesús, R. J., Discrete time control based in neural networks for pendulums, Applied Soft Computing (2017) · doi:10.1016/j.asoc.2017.04.056
[37] Pan, Y.; Er, M. J.; Sun, T.; Xu, B.; Yu, H., Adaptive fuzzy PD control with stable H∞ tracking guarantee, Neurocomputing, 237, 71-78 (2017) · doi:10.1016/j.neucom.2016.08.091
[38] de Jesús, R. J., Adaptive least square control in discrete time of robotic arms, Soft Computing, 19, 12, 3665-3676 (2015) · doi:10.1007/s00500-014-1300-2
[39] Commuri, S.; Jagannathan, S.; Lewis, F. L., CMAC neural network control of robot manipulators, Journal of Robotic Systems, 14, 6, 465-482 (1997) · Zbl 1056.93565 · doi:10.1002/(SICI)1097-4563(199706)14:6<465::AID-ROB7>3.0.CO;2-M
[40] Albus, J. S., Theoretical and experimental aspects of a cerebellar model, Developmental Disabilities Research Reviews, 17, 93-101 (1972)
[41] Yang, B.; Bao, R.; Han, H., Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator, IEEE Transactions on Industrial Electronics, 61, 10, 5271-5279 (2014) · doi:10.1109/TIE.2014.2301717
[42] Jagannathan, S.; Lewis, F. L., Multilayer discrete-time neural-net controller with guaranteed performance, IEEE Transactions on Neural Networks and Learning Systems, 7, 1, 107-130 (1996) · doi:10.1109/72.478396
[43] Ge, S. S.; Wang, J., Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems, 13, 6, 1409-1419 (2002) · doi:10.1109/TNN.2002.804306
[44] Kim, Y. H.; Lewis, F. L.; Abdallah, C. T., A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems, Automatica, 33, 8, 1539-1543 (1997) · Zbl 1047.93504 · doi:10.1016/S0005-1098(97)00065-4
[45] Huang, J.-Q.; Lewis, F. L., Neural-network predictive control for nonlinear dynamic systems with time-delay, IEEE Transactions on Neural Networks and Learning Systems, 14, 2, 377-389 (2003) · doi:10.1109/TNN.2003.809424
[46] Ge, S. S.; Hong, F.; Lee, T. H., Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34, 1, 499-516 (2004) · doi:10.1109/tsmcb.2003.817055
[47] Na, J.; Ren, X. M.; Huang, H., Time-delay positive feedback control for nonlinear time-delay systems with neural network compensation, Zidonghua Xuebao/Acta Automatica Sinica, 34, 9, 1196-1202 (2008) · doi:10.3724/SP.J.1004.2008.01196
[48] Na, J.; Ren, X.; Shang, C.; Guo, Y., Adaptive neural network predictive control for nonlinear pure feedback systems with input delay, Journal of Process Control, 22, 1, 194-206 (2012) · doi:10.1016/j.jprocont.2011.09.003
[49] Selmic, R. R.; Lewis, F. L., Neural-network approximation of piecewise continuous functions: application to friction compensation, IEEE Transactions on Neural Networks and Learning Systems, 13, 3, 745-751 (2002) · doi:10.1109/TNN.2002.1000141
[50] Zhang, H.; Lewis, F. L., Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica, 48, 7, 1432-1439 (2012) · Zbl 1348.93144 · doi:10.1016/j.automatica.2012.05.008
[51] Na, J.; Ren, X.; Zheng, D., Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer, IEEE Transactions on Neural Networks and Learning Systems, 24, 3, 370-382 (2013) · doi:10.1109/TNNLS.2012.2225845
[52] Na, J.; Chen, Q.; Ren, X.; Guo, Y., Adaptive prescribed performance motion control of servo mechanisms with friction compensation, IEEE Transactions on Industrial Electronics, 61, 1, 486-494 (2014) · doi:10.1109/tie.2013.2240635
[53] Na, J.; Ren, X.; Herrmann, G.; Qiao, Z., Adaptive neural dynamic surface control for servo systems with unknown dead-zone, Control Engineering Practice, 19, 11, 1328-1343 (2011) · doi:10.1016/j.conengprac.2011.07.005
[54] Li, G.; Na, J.; Stoten, D. P.; Ren, X., Adaptive neural network feedforward control for dynamically substructured systems, IEEE Transactions on Control Systems Technology, 22, 3, 944-954 (2014) · doi:10.1109/TCST.2013.2271036
[55] Xu, B.; Shi, Z.; Yang, C.; Sun, F., Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form, IEEE Transactions on Cybernetics (2014) · doi:10.1109/TCYB.2014.2311824
[56] Chen, M.; Ge, S., Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer, IEEE Transactions on Industrial Electronics (2015) · doi:10.1109/tie.2015.2455053
[57] Chen, M.; Ge, S. S., Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer, IEEE Transactions on Cybernetics, 43, 4, 1213-1225 (2013) · doi:10.1109/TSMCB.2012.2226577
[58] Chen, M.; Tao, G.; Jiang, B., Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation, IEEE Transactions on Neural Networks and Learning Systems, 26, 9, 2086-2097 (2015) · doi:10.1109/TNNLS.2014.2360933
[59] Werbos, P. J., Approximate dynamic programming for real-time control and neural modeling, Handbook of Intelligent Control (1992)
[60] Wang, F.-Y.; Zhang, H.; Liu, D., Adaptive dynamic programming: an introduction, IEEE Computational Intelligence Magazine, 4, 2, 39-47 (2009) · doi:10.1109/MCI.2009.932261
[61] Lewis, F. L.; Vrabie, D.; Vamvoudakis, K. ., Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers, IEEE Control Systems Magazine, 32, 6, 76-105 (2012) · Zbl 1395.93584 · doi:10.1109/MCS.2012.2214134
[62] Lewis, F. L.; Vrabie, D., Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits and Systems Magazine, 9, 3, 32-50 (2009) · doi:10.1109/MCAS.2009.933854
[63] Al-Tamimi, A.; Lewis, F. L.; Abu-Khalaf, M., Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38, 4, 943-949 (2008) · doi:10.1109/tsmcb.2008.926614
[64] Zhang, H.; Luo, Y.; Liu, D., Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints, IEEE Transactions on Neural Networks and Learning Systems, 20, 9, 1490-1503 (2009) · doi:10.1109/TNN.2009.2027233
[65] Wang, D.; Liu, D.; Wei, Q.; Zhao, D.; Jin, N., Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming, Automatica, 48, 8, 1825-1832 (2012) · Zbl 1269.49042 · doi:10.1016/j.automatica.2012.05.049
[66] He, H.; Ni, Z.; Fu, J., A three-network architecture for on-line learning and optimization based on adaptive dynamic programming, Neurocomputing, 78, 1, 3-13 (2012) · doi:10.1016/j.neucom.2011.05.031
[67] Liu, D.; Wei, Q., Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems, 25, 3, 621-634 (2014) · doi:10.1109/tnnls.2013.2281663
[68] Liu, D.; Yang, X.; Wang, D.; Wei, Q., Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints, IEEE Transactions on Cybernetics, 45, 7, 1372-1385 (2015) · doi:10.1109/tcyb.2015.2417170
[69] Fu, J.; He, H.; Zhou, X., Adaptive learning and control for MIMO system based on adaptive dynamic programming, IEEE Transactions on Neural Networks and Learning Systems, 22, 7, 1133-1148 (2011) · doi:10.1109/TNN.2011.2147797
[70] Lv, Y.; Na, J.; Yang, Q.; Wu, X.; Guo, Y., Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics, International Journal of Control, 89, 1, 99-112 (2016) · Zbl 1332.93174 · doi:10.1080/00207179.2015.1060362
[71] Na, J.; Herrmann, G., Online adaptive approximate optimal tracking control with simplified dual approximation structure for continuous-time unknown nonlinear systems, IEEE/CAA Journal of Automatica Sinica, 1, 4, 412-422 (2014) · doi:10.1109/JAS.2014.7004668
[72] Yao, X., Evolving artificial neural networks, Proceedings of the IEEE, 87, 9, 1423-1447 (1999) · doi:10.1109/5.784219
[73] Ding, S. F.; Li, H.; Su, C. Y.; Yu, J. Z.; Jin, F. X., Evolutionary artificial neural networks: a review, Artificial Intelligence Review, 39, 3, 251-260 (2013) · doi:10.1007/s10462-011-9270-6
[74] Yao, X.; Liu, Y., A new evolutionary system for evolving artificial neural networks, IEEE Transactions on Neural Networks and Learning Systems, 8, 3, 694-713 (1997) · doi:10.1109/72.572107
[75] Li, Y.; Häußler, A., Artificial evolution of neural networks and its application to feedback control, Artificial Intelligence in Engineering, 10, 2, 143-152 (1996) · doi:10.1016/0954-1810(95)00024-0
[76] Goh, C.-K.; Teoh, E.-J.; Tan, K. C., Hybrid multiobjective evolutionary design for artificial neural networks, IEEE Transactions on Neural Networks and Learning Systems, 19, 9, 1531-1548 (2008) · doi:10.1109/TNN.2008.2000444
[77] Tan, K. C.; Li, Y., Grey-box model identification via evolutionary computing, Control Engineering Practice, 10, 7, 673-684 (2002) · doi:10.1016/S0967-0661(02)00031-X
[78] Wang, L.; Tan, C. K.; Chew, C. M., Evolutionary robotics: from algorithms to implementations (2006), from algorithms to implementations[M]. NJ: Chew C M. Evolutionary robotics, from algorithms to implementations[M]. NJ · Zbl 1126.68088
[79] Zhang, J.; Zhang, Z.-H.; Lin, Y.; Chen, N.; Gong, Y.-J.; Zhong, J.-H.; Chung, H. S. H.; Li, Y.; Shi, Y.-H., Evolutionary computation meets machine learning: a survey, IEEE Computational Intelligence Magazine, 6, 4, 68-75 (2011) · doi:10.1109/mci.2011.942584
[80] Yang, C.; Wang, X.; Cheng, L.; Ma, H., Neural-learning-based telerobot control with guaranteed performance, IEEE Transactions on Cybernetics (2017) · doi:10.1109/TCYB.2016.2573837
[81] Yang, C.; Huang, K.; Cheng, H.; Li, Y.; Su, C., Haptic identification by ELM-controlled uncertain manipulator, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 8 (2017) · doi:10.1109/TSMC.2017.2676022
[82] Yang, C.; Li, Z.; Cui, R.; Xu, B., Neural network-based motion control of an underactuated wheeled inverted pendulum model, IEEE Transactions on Neural Networks and Learning Systems (2014) · doi:10.1109/TNNLS.2014.2302475
[83] Yang, C.; Teng, T.; Xu, B.; Li, Z.; Na, J.; Su, C., Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence, International Journal of Control, Automation, and Systems, 15, 4, 1916-1924 (2017) · doi:10.1007/s12555-016-0515-7
[84] Yang, C.; Jiang, Y.; Li, Z.; He, W.; Su, C.-Y., Neural control of bimanual robots with guaranteed global stability and motion precision, IEEE Transactions on Industrial Informatics (2017) · doi:10.1109/tii.2016.2612646
[85] Cui, R.; Yan, W., Mutual synchronization of multiple robot manipulators with unknown dynamics, Journal of Intelligent & Robotic Systems, 68, 2, 105-119 (2012) · Zbl 1251.37080 · doi:10.1007/s10846-012-9674-9
[86] Cheng, L.; Hou, Z.-G.; Tan, M.; Zhang, W. J., Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42, 5, 1470-1479 (2012) · doi:10.1109/TSMCB.2012.2192270
[87] Yang, C.; Wang, X.; Li, Z.; Li, Y.; Su, C., Teleoperation control based on combination of wave variable and neural networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2017) · doi:10.1109/tsmc.2016.2615061
[88] Yang, C.; Luo, J.; Pan, Y.; Liu, Z.; Su, C., Personalized variable gain control with tremor attenuation for robot teleoperation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-12 (2017) · doi:10.1109/TSMC.2017.2694020
[89] Cheng, L.; Hou, Z.-G.; Tan, M., Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model, Automatica, 45, 10, 2312-2318 (2009) · Zbl 1179.93110 · doi:10.1016/j.automatica.2009.06.007
[90] He, W.; Dong, Y.; Sun, C., Adaptive Neural Impedance Control of a Robotic Manipulator with Input Saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 3, 334-344 (2016) · doi:10.1109/TSMC.2015.2429555
[91] He, W.; David, A. O.; Yin, Z.; Sun, C., Neural network control of a robotic manipulator with input deadzone and output constraint, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2015) · doi:10.1109/tsmc.2015.2466194
[92] He, W.; Yin, Z.; Sun, C., Adaptive Neural Network Control of a Marine Vessel With Constraints Using the Asymmetric Barrier Lyapunov Function, IEEE Transactions on Cybernetics (2016) · doi:10.1109/TCYB.2016.2554621
[93] He, W.; Chen, Y.; Yin, Z., Adaptive neural network control of an uncertain robot with full-state constraints, IEEE Transactions on Cybernetics, 46, 3, 620-629 (2016) · doi:10.1109/TCYB.2015.2411285
[94] Sun, C.; He, W.; Hong, J., Neural Network Control of a Flexible Robotic Manipulator Using the Lumped Spring-Mass Model, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 8, 1863-1874 (2017) · doi:10.1109/TSMC.2016.2562506
[95] He, W.; Ouyang, Y.; Hong, J., Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Deadzone, IEEE Transactions on Industrial Informatics, 13, 1, 48-59 (2017) · doi:10.1109/TII.2016.2608739
[96] Cui, R.; Zhang, X.; Cui, D., Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities, Ocean Engineering, 123, 45-54 (2016) · doi:10.1016/j.oceaneng.2016.06.041
[97] Cui, R.; Yang, C.; Li, Y.; Sharma, S., Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using Reinforcement Learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 6, 1019-1029 (2017) · doi:10.1109/TSMC.2016.2645699
[98] Xu, B.; Wang, D.; Zhang, Y.; Shi, Z., DOB based neural control of flexible hypersonic flight vehicle considering wind effects, IEEE Transactions on Industrial Electronics, PP, 99, 1 (2017) · doi:10.1109/TIE.2017.2703678
[99] Xu, B.; Yang, C.; Pan, Y., Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle, IEEE Transactions on Neural Networks and Learning Systems, 26, 10, 2563-2575 (2015) · doi:10.1109/TNNLS.2015.2456972
[100] Li, Y.; Ge, S. S.; Yang, C., Learning impedance control for physical robot-environment interaction, International Journal of Control, 85, 2, 182-193 (2012) · Zbl 1282.93188 · doi:10.1080/00207179.2011.642309
[101] Li, Y.; Ge, S. S.; Zhang, Q.; Lee, T. ., Neural networks impedance control of robots interacting with environments, IET Control Theory & Applications, 7, 11, 1509-1519 (2013) · doi:10.1049/iet-cta.2012.1032
[102] Li, Y.; Ge, S. S., Impedance learning for robots interacting with unknown environments, IEEE Transactions on Control Systems Technology, 22, 4, 1422-1432 (2014) · doi:10.1109/TCST.2013.2286194
[103] Wang, C.; Li, Y.; Ge, S. S.; Lee, T. ., Optimal critic learning for robot control in time-varying environments, IEEE Transactions on Neural Networks and Learning Systems, 26, 10, 2301-2310 (2015) · doi:10.1109/TNNLS.2014.2378812
[104] Li, Y.; Chen, L.; Tee, K. P.; Li, Q., Reinforcement learning control for coordinated manipulation of multi-robots, Neurocomputing, 170, 168-175 (2015) · doi:10.1016/j.neucom.2015.02.091
[105] Li, Y.; Ge, S. S., Human—robot collaboration based on motion intention estimation, IEEE/ASME Transactions on Mechatronics, 19, 3, 1007-1014 (2013) · doi:10.1109/TMECH.2013.2264533
[106] Li, Y.; Tee, K. P.; Chan, W. L.; Yan, R.; Chua, Y.; Limbu, D. K., Continuous Role Adaptation for Human-Robot Shared Control, IEEE Transactions on Robotics, 31, 3, 672-681 (2015) · doi:10.1109/TRO.2015.2419873
[107] Li, Y.; Tee, K. P.; Yan, R.; Chan, W. L.; Wu, Y., A Framework of Human-Robot Coordination Based on Game Theory and Policy Iteration, IEEE Transactions on Robotics, 32, 6, 1408-1418 (2016) · doi:10.1109/TRO.2016.2597322
[108] Clark, A., Surfing uncertainty: Prediction, action, and the embodied mind (2015), Oxford University Press
[109] Zhong, J.; Weber, C.; Wermter, S., Learning features and predictive transformation encoding based on a horizontal product model, Neural Networks and Machine LearningICANN, 539-546 (2012)
[110] Zhong, J.; Weber, C.; Wermter, S., A predictive network architecture for a robust and smooth robot docking behavior, Journal of Behavioral Robotics, 3, 4, 172-180 (2012)
[111] Prinz, W., Perception and Action Planning, European Journal of Cognitive Psychology, 9, 2, 129-154 (1997) · doi:10.1080/713752551
[112] Zhong, J.; Peniak, M.; Tani, J.; Ogata, T.; Cangelosi, A., Sensorimotor Input as a Language Generalisation Tool: A Neurorobotics Model for Generation and Generalisation of Noun-Verb Combinations with Sensorimotor Inputs, arXiv:1605.03261, 1605.03261: arXiv, 1605.03261
[113] Siegelmann, H. T.; Sontag, E. D., On the computational power of neural nets, Journal of Computer and System Sciences, 50, 1, 132-150 (1995) · Zbl 0826.68104 · doi:10.1006/jcss.1995.1013
[114] Zhong, J., Artificial Neural Models for Feedback Pathways for Sensorimotor Integration
[115] Tani, J.; Ito, M.; Sugita, Y., Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using RNNPB, Neural Networks, 17, 8-9, 1273-1289 (2004) · doi:10.1016/j.neunet.2004.05.007
[116] Hinoshita, W.; Arie, H.; Tani, J.; Okuno, H. G.; Ogata, T., Emergence of hierarchical structure mirroring linguistic composition in a recurrent neural network, Neural Networks, 24, 4, 311-320 (2011) · doi:10.1016/j.neunet.2010.12.006
[117] Tani, J., Exploring robotic minds: actions, symbols, and consciousness as self-organizing dynamic phenomena (2016), Oxford University Press · doi:10.1093/acprof:oso/9780190281069.001.0001
[118] Ahmadi, A.; Tani, J., How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? Robotic experiments on imitative interaction, Neural Networks, 92, 3-16 (2017) · doi:10.1016/j.neunet.2017.02.015
[119] Zhong, J.; Cangelosi, A.; Wermter, S., Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives, Frontiers in Behavioral Neuroscience, 8, article no. 22 (2014) · doi:10.3389/fnbeh.2014.00022
[120] Abbas, H. K.; Zablotowicz, R. M.; Bruns, H. A., Modeling the colonization of maize by toxigenic and non-toxigenic Aspergillus flavus strains: implications for biological control, World Mycotoxin Journal, 1, 3, 333-340 (2008) · doi:10.3920/WMJ2008.x036
[121] Zhong, J.; Canamero, L., From continuous affective space to continuous expression space: Non-verbal behaviour recognition and generation, Proceedings of the 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, IEEE ICDL-EPIROB 2014 · doi:10.1109/DEVLRN.2014.6982957
[122] Zhong, J.; Cangelosi, A.; Ogata, T., Toward Abstraction from Multi-modal Data: Empirical Studies on Multiple Time-scale Recurrent Models, Proceedings of the International Joint Conference on Artificial Neural Networks (IJCNN)
[123] Park, G.; Tani, J., Development of compositional and contextual communicable congruence in robots by using dynamic neural network models, Neural Networks, 72, 109-122 (2015) · doi:10.1016/j.neunet.2015.09.004
[124] Ahmadi, A.; Tani, J., Bridging the gap between probabilistic and deterministic models: a simulation study on a variational Bayes predictive coding recurrent neural network model, 2017, https://arxiv.org/abs/1706.10240
[125] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015) · doi:10.1038/nature14539
[126] Schmidhuber, J., Deep learning in neural networks: an overview, Neural Networks, 61, 85-117 (2015) · doi:10.1016/j.neunet.2014.09.003
[127] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet classification with deep convolutional neural networks, Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS ’12)
[128] Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F. E., A survey of deep neural network architectures and their applications, Neurocomputing, 234, 11-26 (2017) · doi:10.1016/j.neucom.2016.12.038
[129] Hinton, G. E.; Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks, American Association for the Advancement of Science: Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083 · doi:10.1126/science.1127647
[130] Pijanowski, B. C.; Tayyebi, A.; Doucette, J.; Pekin, B. K.; Braun, D.; Plourde, J., A big data urban growth simulation at a national scale: configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment, Environmental Modelling & Software, 51, 250-268 (2014) · doi:10.1016/j.envsoft.2013.09.015
[131] Cireşan, D. C.; Meier, U.; Gambardella, L. M.; Schmidhuber, J., Deep, big, simple neural nets for handwritten digit recognition, Neural Computation, 22, 12, 3207-3220 (2010) · doi:10.1162/NECO_a_00052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.