×

A simple rule of direct reciprocity leads to the stable coexistence of cooperation and defection in the prisoner’s dilemma game. (English) Zbl 1370.92119

Summary: The long-term coexistence of cooperation and defection is a common phenomenon in nature and human society. However, none of the theoretical models based on the prisoner’s dilemma (PD) game can provide a concise theoretical model to explain what leads to the stable coexistence of cooperation and defection in the long-term even though some rules for promoting cooperation have been summarized [M. A. Nowak, “Five rules for the evolution of cooperation”, Science 314, No. 5805, 1560–1563 (2006; doi:10.1126/science.1133755)]. Here, based on the concept of direct reciprocity, we develop an elementary model to show why stable coexistence of cooperation and defection in the PD game is possible. The basic idea behind our theoretical model is that all players in a PD game prefer a cooperator as an opponent, and our results show that considering strategies allowing opting out against defection provide a general and concise way of understanding the fundamental importance of direct reciprocity in driving the evolution of cooperation.

MSC:

92D15 Problems related to evolution
91D10 Models of societies, social and urban evolution
92D25 Population dynamics (general)
91A12 Cooperative games
91A22 Evolutionary games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aktipis, C. A., Know when to walk awaycontingent movement and the evolution of cooperation, J. Theor. Biol., 231, 249-260 (2004) · Zbl 1447.92561
[2] Axelrod, R.; Dion, D., The further evolution of cooperation, Science, 242, 1385-1390 (1988)
[3] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 1390-1396 (1981) · Zbl 1225.92037
[4] Axelrod, R., The Evolution of Cooperation (1984), Basic Books: Basic Books New York
[5] Broom, M.; Rychtar, J., Game-Theoretical Models in Biology (2013), CRC Press: CRC Press London UK · Zbl 1264.92002
[6] Cavalli-Sforza, L. L.; Feldman, M. W., Paradox of the evolution of communication and of social interactivity, Proc. Natl. Acad. Sci. USA, 80, 2017-2021 (1983) · Zbl 0504.92028
[7] Clutton-Brock, T., Breeding togetherkin selection and mutualism in cooperative vertebrates, Science, 296, 69-72 (2002)
[8] Dugatkin, L. A., Cooperation Among Animals: An Evolutionary Perspective (1997), Oxford University Press: Oxford University Press New York
[9] Eshel, I.; Cavalli-Sforza, L. L., Assortment of encounters and evolution of cooperativeness, Proc. Natl. Acad. Sci. USA, 79, 1331-1335 (1982) · Zbl 0491.92024
[10] Fletcher, J. A.; Doebeli, M., How altruism evolvesassortment and synergy, J. Evol. Biol., 19, 1389-1393 (2006)
[11] Fujiwara-Greve, T.; Okuno-Fujiwara, M., Voluntarily separable repeated prisoner’s dilemma, Rev. Econ. Stud., 76, 993-1021 (2009) · Zbl 1185.91052
[12] Hamilton, W. D., The genetical evolution of social behaviour, J. Theor. Biol., 7, 1-16 (1964)
[13] Hayashi, N., From TIT-for-TAT to OUT-for-TAT, Sociol. Theory Methods, 8, 19-32 (1993)
[14] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0914.90287
[15] Izquierdo, S. S.; Izquierdo, L. R.; Vega-Redondo, F., The option to leaveconditional dissociation in the evolution of cooperation, J. Theor. Biol., 267, 76-84 (2010) · Zbl 1410.91076
[16] Izquierdo, S. S.; Izquierdo, L. R.; Vega-Redondo, F., Leave and let leavea sufficient condition to explain the evolutionary emergence of cooperation, J. Econ. Dyn. Control., 46, 91-113 (2014) · Zbl 1402.91044
[17] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0526.90102
[18] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[19] Nowak, M. A.; Sigmund, K., Evolution of indirect reciprocity, Nature, 437, 1291-1298 (2005)
[21] Nowak, M. A.; Sasaki, A.; Taylor, C.; Fudenberg, D., Emergence of cooperation and evolutionary stability in finite populations, Nature, 428, 646-650 (2004)
[22] Nowak, M. A., Evolutionary Dynamics (2006), Belknap Press: Belknap Press Cambridge · Zbl 1098.92051
[23] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560-1563 (2006)
[24] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M. A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502-505 (2006)
[25] Pacheco, J. M.; Traulsen, A.; Ohtsuki, H.; Nowak, M. A., Repeated games and direct reciprocity under active linking, J. Theor. Biol., 250, 723-731 (2008) · Zbl 1397.91075
[26] Schuessler, R., Exit threats and cooperation under anonymity, J. Confl. Resolut., 33, 728-749 (1989)
[27] Sigmund, K., The Calculus of Selfishness (2010), Princeton University Press: Princeton University Press Princeton · Zbl 1189.91010
[28] Taylor, C.; Nowak, M. A., Evolutionary game dynamics with non-uniform interaction rates, Theor. Popul Biol., 69, 243-252 (2006) · Zbl 1109.92037
[29] Traulsen, A.; Nowak, M. A., Evolution of cooperation by multilevel selection, Proc. Natl. Acad. Sci. USA, 103, 10952-10955 (2006)
[30] Traulsen, A.; Claussen, J. C.; Hauert, C., Coevolutionary Dynamicsfrom finite to infinite populations, Phys. Rev. Lett., 95, 238701 (2005)
[31] Traulsen, A.; Pacheco, J. M.; Imhof, L. A., Stochasitcity and evolutionary stability, Phys. Rev. E., 74, 011901 (2006)
[32] Trivers, R., The evolution of reciprocal altruism, Q Rev. Biol., 46, 35-57 (1971)
[33] Wu, B.; Arranz, J.; Du, J.; Zhou, D.; Traulsen, A., Evolving synergetic interactions, J. R. Soc. Interface., 13, 20160282 (2016)
[34] Zheng, X. D.; Cressmn, R.; Tao, Y., The diffusion approximation of stochastic evoltionary game dynamicsmean effective fixation time and the significance of the One-third Law, Dyn. Games Appl., 1, 462-477 (2011)
[35] Zhou, D.; Wu, B.; Ge, H., Evolutionary stability and quasi-stationary strtegy in stochastic evolutionary game dynamics, J. Theor. Biol., 264, 874-881 (2010) · Zbl 1406.91061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.