×

zbMATH — the first resource for mathematics

Synchronization of electrically coupled resonate-and-fire neurons. (English) Zbl 1429.92033
MSC:
92B25 Biological rhythms and synchronization
92C20 Neural biology
34D06 Synchronization of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Software:
NEURON; Python
PDF BibTeX XML Cite
Full Text: DOI Link arXiv
References:
[1] L. F. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907), Brain Research Bulletin, 50 (1999), pp. 303-304, https://doi.org/10.1016/S0361-9230(99)00161-6.
[2] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), pp. 137-185, https://doi.org/10.1103/RevModPhys.77.137.
[3] M. A. Aizerman and F. R. Gantmakher, On the stability of periodic motions, J. Appl. Math. Mech., 22 (1958), pp. 1065-1078, https://doi.org/10.1016/0021-8928(58)90033-9, 00054.
[4] D. G. Aronson, G. B. Ermentrout, and N. Kopell, Amplitude response of coupled oscillators, Phys. D, 41 (1990), pp. 403-449, https://doi.org/10.1016/0167-2789(90)90007-C. · Zbl 0703.34047
[5] P. Ashwin, S. Coombes, and R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6 (2016), pp. 1-92, https://doi.org/10.1186/s13408-015-0033-6. · Zbl 1356.92015
[6] F. Baroni and P. Varona, Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations, J. Physiol.-Paris, 104 (2010), pp. 91-98, https://doi.org/10.1016/j.jphysparis.2009.11.007.
[7] M. V. L. Bennett and R. S. Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron, 41 (2004), pp. 495-511, https://doi.org/10.1016/S0896-6273(04)00043-1.
[8] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. 163, Springer-Verlag, London, 2008. · Zbl 1146.37003
[9] S. Blankenburg, W. Wu, B. Lindner, and S. Schreiber, Information filtering in resonant neurons, J. Comput. Neurosci., 39 (2015), pp. 349-370, https://doi.org/10.1007/s10827-015-0580-6. · Zbl 1382.92041
[10] R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol., 94 (2005), pp. 3637-3642, https://doi.org/10.1152/jn.00686.2005.
[11] N. Brunel, V. Hakim, and M. J. E. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance, Phys. Rev. E, 67 (2003), 051916, https://doi.org/10.1103/PhysRevE.67.051916.
[12] N. Brunel and P. E. Latham, Firing rate of the noisy quadratic integrate-and-fire neuron, Neural Comput., 15 (2003), pp. 2281-2306. · Zbl 1085.68617
[13] N. Brunel and M. C. W. van Rossum, Quantitative investigations of electrical nerve excitation treated as polarization, Biol. Cybernet., 97 (2007), pp. 341-349, https://doi.org/10.1007/s00422-007-0189-6.
[14] G. Buzsáki and A. Draguhn, Neuronal oscillations in cortical networks, Science, 304 (2004), pp. 1926-1929, https://doi.org/10.1126/science.1099745.
[15] V. Carmona, S. Fernández-García, E. Freire, and F. Torres, Melnikov theory for a class of planar hybrid systems, Phys. D, 248 (2013), pp. 44-54, https://doi.org/10.1016/j.physd.2013.01.002.
[16] N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge University Press, Cambridge, UK, 2006.
[17] J. Chen, J. Suarez, P. Molnar, and A. Behal, Maximum likelihood parameter estimation in a stochastic resonate-and-fire neuronal model, in Proceedings of the 1st IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), 2011, pp. 57-62, https://doi.org/10.1109/ICCABS.2011.5729941.
[18] C. C. Chow and N. Kopell, Dynamics of spiking neurons with electrical coupling, Neural Comput., 12 (2000), pp. 1643-1678, https://doi.org/10.1162/089976600300015295.
[19] B. W. Connors and M. A. Long, Electrical synapses in the mammalian brain, Annu. Rev. Neurosci., 27 (2004), pp. 393-418, https://doi.org/10.1146/annurev.neuro.26.041002.131128.
[20] S. Coombes, Dynamics of synaptically coupled integrate-and-fire-or-burst neurons, Phys. Rev. E, 67 (2003), 041910, https://doi.org/10.1103/PhysRevE.67.041910.
[21] S. Coombes and P. C. Bressloff, Mode locking and Arnold tongues in integrate-and-fire neural oscillators, Phys. Rev. E, 60 (1999), pp. 2086-2096, https://doi.org/10.1103/PhysRevE.60.2086.
[22] S. Coombes, R. Thul, and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), pp. 2042-2057, https://doi.org/10.1016/j.physd.2011.05.012.
[23] S. Coombes and M. Zachariou, Gap junctions and emergent rhythms, in Coherent Behavior in Neuronal Networks, K. Josic, J. Rubin, M. Matias, and R. Romo, eds., Springer Ser. Comput. Neurosci. 3, Springer New York, 2009, pp. 77-94.
[24] J. R. De Gruijl, P. Bazzigaluppi, M. T. G. de Jeu, and C. I. De Zeeuw, Climbing fiber burst size and olivary sub-threshold oscillations in a network setting, PLoS Comput. Biol., 8 (2012), e1002814, https://doi.org/10.1371/journal.pcbi.1002814.
[25] C. I. De Zeeuw, C. C. Hoogenraad, S. K. E. Koekkoek, T. J. H. Ruigrok, N. Galjart, and J. I. Simpson, Microcircuitry and function of the inferior olive, Trends Neurosci., 21 (1998), pp. 391-400, https://doi.org/10.1016/S0166-2236(98)01310-1.
[26] A. Di Garbo, M. Barbi, and S. Chillemi, Dynamical behavior of the linearized version of the Fitzhugh-Nagumo neural model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), pp. 2549-2558. · Zbl 1091.37523
[27] R. Dodla and C. J. Wilson, Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators, Neural Comput., 25 (2013), pp. 2545-2610, https://doi.org/10.1162/NECO_a_00488. · Zbl 1415.92031
[28] R. Dodla and C. J. Wilson, Effect of sharp jumps at the edges of phase response curves on synchronization of electrically coupled neuronal oscillators, PLOS ONE, 8 (2013), e58922, https://doi.org/10.1371/journal.pone.0058922. · Zbl 1415.92031
[29] Y. Dong, S. Mihalas, A. Russell, R. Etienne-Cummings, and E. Niebur, Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains, Neural Comput., 23 (2011), pp. 2833-2867, https://doi.org/10.1162/NECO_a_00196. · Zbl 1302.92022
[30] T. A. Engel, L. Schimansky-Geier, A. Herz, S. Schreiber, and I. Erchova, Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex, J. Neurophysiol., 100 (2008), pp. 1576-1589, https://doi.org/10.1152/jn.01282.2007.
[31] J. R. Engelbrecht and R. Mirollo, Dynamical phase transitions in periodically driven model neurons, Phys. Rev. E, 79 (2009), 021904, https://doi.org/10.1103/PhysRevE.79.021904.
[32] I. Erchova, G. Kreck, U. Heinemann, and A. V. M. Herz, Dynamics of rat entorhinal cortex layer II and \textupIII cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold, J. Physiol., 560 (2004), pp. 89-110, https://doi.org/10.1113/jphysiol.2004.069930.
[33] B. Ermentrout, M. Pascal, and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Comput., 13 (2001), pp. 1285-1310, https://doi.org/10.1162/08997660152002861. · Zbl 0963.68647
[34] G. B. Ermentrout and N. Kopell, Frequency plateaus in a chain of weakly coupled oscillators, I., SIAM J. Math. Anal., 15 (1984), pp. 215-237, https://doi.org/10.1137/0515019. · Zbl 0558.34033
[35] G. B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46 (1986), pp. 233-253, https://doi.org/10.1137/0146017. · Zbl 0594.58033
[36] G. B. Ermentrout, N:m phase-locking of weakly coupled oscillators, J. Math. Biol., 12 (1981), pp. 327-342, https://doi.org/10.1007/BF00276920. · Zbl 0476.92007
[37] G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), pp. 1-9, https://doi.org/10.1007/BF00276542.
[38] G. B. Ermentrout, B. Beverlin, and T. Netoff, Phase response curves to measure ion channel effects on neurons, in Phase Response Curves in Neuroscience, N. W. Schultheiss, A. A. Prinz, and R. J. Butera, eds., Springer Ser. Comput. Neurosci. 6, Springer, New York, 2012, pp. 207-236.
[39] G. B. Ermentrout, L. Glass, and B. E. Oldeman, The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation, Neural Comput., 24 (2012), pp. 3111-3125. · Zbl 1268.92016
[40] G. B. Ermentrout and N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29 (1991), pp. 195-217. · Zbl 0718.92004
[41] J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 12 (2011), 105.
[42] N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and N. Brunel, How spike generation mechanisms determine the neuronal response to fluctuating inputs, J. Neurosci., 23 (2003), pp. 11628-11640.
[43] P. Fuentealba, S. Crochet, I. Timofeev, M. Bazhenov, T. J. Sejnowski, and M. Steriade, Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo, European J. Neurosci., 20 (2004), pp. 111-119, https://doi.org/10.1111/j.1460-9568.2004.03462.x, 00051.
[44] D. Golomb and D. Hansel, The number of synaptic inputs and the synchrony of large, sparse neuronal networks, Neural Comput., 12 (2000), pp. 1095-1139, https://doi.org/10.1162/089976600300015529.
[45] A. Gupta, Y. Wang, and H. Markram, Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex, Science, 287 (2000), pp. 273-278, https://doi.org/10.1126/science.287.5451.273.
[46] B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes, Phase-response curves give the responses of neurons to transient inputs, J. Neurophysiol., 94 (2005), pp. 1623-1635, https://doi.org/10.1152/jn.00359.2004.
[47] D. Hansel, G. Mato, and C. Meunier, Synchrony in excitatory neural networks, Neural Comput., 7 (1995), pp. 307-337, https://doi.org/10.1162/neco.1995.7.2.307.
[48] D. Hansel, G. Mato, C. Meunier, and L. Neltner, On numerical simulations of integrate-and-fire neural networks, Neural Comput., 10 (1998), pp. 467-483.
[49] A. V. Hill, Excitation and accommodation in nerve, Proc. Royal Soc. London Ser. B Biol. Sci., 119 (1936), pp. 305-355.
[50] M. Hines, A. P. Davison, and E. Muller, NEURON and Python, Front. Neuroinform., 3 (2009), 00166, https://doi.org/10.3389/neuro.11.001.2009.
[51] B. Hutcheon and Y. Yarom, Resonance, oscillation and the intrinsic frequency preferences of neurons, Trends Neurosci., 23 (2000), pp. 216-222, https://doi.org/10.1016/S0166-2236(00)01547-2.
[52] E. M. Izhikevich, Phase equations for relaxation oscillators, SIAM J. Appl. Math., 60 (2000), pp. 1789-1804, https://doi.org/10.1137/S0036139999351001. · Zbl 1016.92001
[53] E. M. Izhikevich, Resonate-and-fire neurons, Neural Netw., 14 (2001), pp. 883-894.
[54] E. M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw., 14 (2003), pp. 1569-1572.
[55] E. M. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw., 15 (2004), pp. 1063-1070.
[56] E. M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, Cambridge, MA, 2007.
[57] N. D. Jimenez, S. Mihalas, R. Brown, E. Niebur, and J. Rubin, Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1474-1514, https://doi.org/10.1137/120900435. · Zbl 1284.37030
[58] R. Jolivet, T. J. Lewis, and W. Gerstner, Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy, J. Neurophysiol., 92 (2004), pp. 959-976, https://doi.org/10.1152/jn.00190.2004.
[59] T. B. Kepler, E. Marder, and L. F. Abbott, The effect of electrical coupling on the frequency of model neuronal oscillators, Science, 248 (1990), pp. 83-85.
[60] A. Khajeh Alijani, Mode locking in a periodically forced resonate-and-fire neuron model, Phys. Rev. E, 80 (2009), 051922, https://doi.org/10.1103/PhysRevE.80.051922.
[61] N. Kopell and G. B. Ermentrout, Symmetry and phaselocking in chains of weakly coupled oscillators, Comm. Pure Appl. Math., 39 (1986), pp. 623-660, https://doi.org/10.1002/cpa.3160390504. · Zbl 0596.92011
[62] N. Kopell and G. B. Ermentrout, Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., Elsevier Science, New York, 2002, pp. 3-54. · Zbl 1105.92320
[63] Y. Kuramoto, Collective synchronization of pulse-coupled oscillators and excitable units, Phys. D, 50 (1991), pp. 15-30, https://doi.org/10.1016/0167-2789(91)90075-K.
[64] J. Ladenbauer, M. Augustin, L. Shiau, and K. Obermayer, Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons, PLoS Comput. Biol., 8 (2012), e1002478, https://doi.org/10.1371/journal.pcbi.1002478.
[65] J. Ladenbauer, J. Lehnert, H. Rankoohi, T. Dahms, E. Schöll, and K. Obermayer, Adaptation controls synchrony and cluster states of coupled threshold-model neurons, Phys. Rev. E, 88 (2013), 042713, https://doi.org/10.1103/PhysRevE.88.042713.
[66] C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Phys. Nonlinear Phenom., 238 (2009), pp. 1569-1588, https://doi.org/10.1016/j.physd.2009.04.012. · Zbl 1185.34042
[67] L. Lapicque, Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen., 9 (1907), pp. 620-635.
[68] R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Springer, Berlin, 2004.
[69] T. J. Lewis and J. Rinzel, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, J. Comput. Neurosci., 14 (2003), pp. 283-309.
[70] T. J. Lewis and F. K. Skinner, Understanding Activity in Electrically Coupled Networks Using PRCs and the Theory of Weakly Coupled Oscillators, in Phase Response Curves in Neuroscience, N. W. Schultheiss, A. A. Prinz, and R. J. Butera, eds., Springer Ser. Comput. Neurosci. 6, Springer, New York, 2012, pp. 329-359.
[71] E. Leznik, V. Makarenko, and R. Llinás, Electrotonically mediated oscillatory patterns in neuronal ensembles: An in vitro voltage-dependent dye-imaging study in the inferior olive, J. Neurosci., 22 (2002), pp. 2804-2815.
[72] R. Llinas and Y. Yarom, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol., 315 (1981), pp. 549-567.
[73] S. Luccioli, S. Olmi, A. Politi, and A. Torcini, Collective dynamics in sparse networks, Phys. Rev. Lett., 109 (2012), 138103, https://doi.org/10.1103/PhysRevLett.109.138103.
[74] J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, and B. W. Connors, Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex, J. Neurosci., 27 (2007), pp. 2058-2073, https://doi.org/10.1523/JNEUROSCI.2715-06.2007.
[75] S. P. Marshall and E. J. Lang, Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum, J. Neurosci., 24 (2004), pp. 11356-11367, https://doi.org/10.1523/JNEUROSCI.3907-04.2004.
[76] R. A. McDougal, T. M. Morse, T. Carnevale, L. Marenco, R. Wang, M. Migliore, P. L. Miller, G. M. Shepherd, and M. L. Hines, Twenty years of ModelDB and beyond: Building essential modeling tools for the future of neuroscience, J. Comput. Neurosci., 42 (2017), pp. 1-10, https://doi.org/10.1007/s10827-016-0623-7.
[77] Ş. Mihalaş and E. Niebur, A generalized linear integrate-and-fire neural model produces diverse spiking behaviors, Neural Comput., 21 (2009), pp. 704-718, https://doi.org/10.1162/neco.2008.12-07-680.
[78] R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), pp. 1645-1662, https://doi.org/10.1137/0150098. · Zbl 0712.92006
[79] K. Miura and M. Okada, Pulse-coupled resonate-and-fire models, Phys. Rev. E, 70 (2004), 021914.
[80] K. Miura and M. Okada, Globally coupled resonate-and-fire models, Progr. Theoret. Phys. Suppl., 161 (2006), pp. 255-259.
[81] K. Nakada, K. Miura, and H. Hayashi, Burst synchronization and chaotic phenomena in two strongly coupled resonate-and-fire neurons, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), pp. 1249-1259, https://doi.org/10.1142/S0218127408020999. · Zbl 1147.34329
[82] R. Naud, N. Marcille, C. Clopath, and W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybernet., 99 (2008), 335, https://doi.org/10.1007/s00422-008-0264-7. · Zbl 1161.92012
[83] O. E. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model, Phys. Rev. Lett., 109 (2012), 164101, https://doi.org/10.1103/PhysRevLett.109.164101.
[84] O. E. Omel’chenko, M. Wolfrum, and C. R. Laing, Partially coherent twisted states in arrays of coupled phase oscillators, Chaos Interdiscip. J. Nonlinear Sci., 24 (2014), 023102, https://doi.org/10.1063/1.4870259.
[85] S. Ostojic, N. Brunel, and V. Hakim, Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities, J. Comput. Neurosci., 26 (2009), pp. 369-392, https://doi.org/10.1007/s10827-008-0117-3.
[86] M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28 (2015), R67, https://doi.org/10.1088/0951-7715/28/3/R67. · Zbl 1392.34036
[87] Y. Park, K. M. Shaw, H. J. Chiel, and P. J. Thomas, The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems, European J. Appl. Math., 29 (2018), pp. 905-940, https://doi.org/10.1017/S0956792518000128. · Zbl 1405.37054
[88] A. E. Pereda, S. Curti, G. Hoge, R. Cachope, C. E. Flores, and J. E. Rash, Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity, Biochim. Biophys. Acta, 1828 (2013), pp. 134-146, https://doi.org/10.1016/j.bbamem.2012.05.026.
[89] B. Pfeuty, G. Mato, D. Golomb, and D. Hansel, Electrical synapses and synchrony: The role of intrinsic currents, J. Neurosci., 23 (2003), pp. 6280-6294.
[90] M. Pospischil, M. Toledo-Rodriguez, C. Monier, Z. Piwkowska, T. Bal, Y. Frégnac, H. Markram, and A. Destexhe, Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons, Biol. Cybernet., 99 (2008), pp. 427-441, https://doi.org/10.1007/s00422-008-0263-8. · Zbl 1161.92013
[91] N. Rashevsky, Outline of a physico-mathematical theory of excitation and inhibition, Protoplasma, 20 (1933), pp. 42-56, https://doi.org/10.1007/BF02674811.
[92] M. J. E. Richardson, N. Brunel, and V. Hakim, From subthreshold to firing-rate resonance, J. Neurophysiol., 89 (2003), pp. 2538-2554, https://doi.org/10.1152/jn.00955.2002.
[93] H. Sakaguchi and Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment, Progr. Theoret. Phys., 76 (1986), pp. 576-581.
[94] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Mutual entrainment in oscillator lattices with nonvariational type interaction, Progr. Theoret. Phys., 79 (1988), pp. 1069-1079.
[95] M. A. Schwemmer and T. J. Lewis, Bistability in a leaky integrate-and-fire neuron with a passive dendrite, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 507-539, https://doi.org/10.1137/110847354. · Zbl 1235.92015
[96] M. A. Schwemmer and T. J. Lewis, The theory of weakly coupled oscillators, in Phase Response Curves in Neuroscience, N. W. Schultheiss, A. A. Prinz, and R. J. Butera, eds., Springer Ser. Comput. Neurosci. 6, Springer, New York, 2012, pp. 3-31.
[97] A. Sherman and J. Rinzel, Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc. Natl. Acad. Sci. USA, 89 (1992), pp. 2471-2474.
[98] S. Shirasaka, W. Kurebayashi, and H. Nakao, Phase reduction theory for hybrid nonlinear oscillators, Phys. Rev. E, 95 (2017), 012212.
[99] W. Singer, Neuronal synchrony: A versatile code for the definition of relations?, Neuron, 24 (1999), pp. 49-65, https://doi.org/10.1016/S0896-6273(00)80821-1.
[100] G. D. Smith, C. L. Cox, S. M. Sherman, and J. Rinzel, Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model, J. Neurophysiol., 83 (2000), pp. 588-610.
[101] M. Srinivas, R. Rozental, T. Kojima, R. Dermietzel, M. Mehler, D. F. Condorelli, J. A. Kessler, and D. C. Spray, Functional properties of channels formed by the neuronal gap junction protein connexin36, J. Neurosci., 19 (1999), pp. 9848-9855.
[102] K. M. Stiefel, B. S. Gutkin, and T. J. Sejnowski, The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons, J. Comput. Neurosci., 26 (2009), pp. 289-301, https://doi.org/10.1007/s10827-008-0111-9.
[103] C. Teeter, R. Iyer, V. Menon, N. Gouwens, D. Feng, J. Berg, A. Szafer, N. Cain, H. Zeng, M. Hawrylycz, C. Koch, and S. Mihalas, Generalized leaky integrate-and-fire models classify multiple neuron types, Nat. Commun., 9 (2018), 709, https://doi.org/10.1038/s41467-017-02717-4.
[104] J. Touboul and R. Brette, Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1462-1506, https://doi.org/10.1137/080742762. · Zbl 1204.37019
[105] A. Treves, Mean-field analysis of neuronal spike dynamics, Netw. Comput. Neural Syst., 4 (1993), pp. 259-284. · Zbl 0798.92009
[106] T. Verechtchaguina, I. M. Sokolov, and L. Schimansky-Geier, Interspike interval densities of resonate and fire neurons, Biosystems, 89 (2007), pp. 63-68, https://doi.org/10.1016/j.biosystems.2006.03.014.
[107] K. C. Wedgwood, K. K. Lin, R. Thul, and S. Coombes, Phase-amplitude descriptions of neural oscillator models, J. Math. Neurosci., 3 (2013), 2, https://doi.org/10.1186/2190-8567-3-2. · Zbl 1291.92052
[108] D. Wilson, Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers, Phys. Rev. E, 99 (2019), 022210, https://doi.org/10.1103/PhysRevE.99.022210.
[109] D. Wilson and B. Ermentrout, Greater accuracy and broadened applicability of phase reduction using isostable coordinates, J. Math. Biol., 76 (2018), pp. 37-66, https://doi.org/10.1007/s00285-017-1141-6. · Zbl 1392.92007
[110] D. Wilson and J. Moehlis, Isostable reduction of periodic orbits, Phys. Rev. E, 94 (2016), 052213, https://doi.org/10.1103/PhysRevE.94.052213.
[111] M. Wolfrum, S. V. Gurevich, and O. E. Omel’chenko, Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators, Nonlinearity, 29 (2016), 257, https://doi.org/10.1088/0951-7715/29/2/257. · Zbl 1338.34080
[112] G. Young, Note on excitation theories, Psychometrika, 2 (1937), pp. 103-106, https://doi.org/10.1007/BF02288064.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.