×

Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions. (English) Zbl 1171.76312

Summary: An experimental and numerical systematic study of the growth of the Richtmyer-Meshkov instability-induced mixing following a re-shock is made, where the initial shock moves from the light fluid to the heavy one, over an incident Mach number range of 1.15-1.45. The evolution of the mixing zone following the re-shock is found to be independent of its amplitude at the time of the re-shock and to depend directly on the strength of the re-shock. A linear growth of the mixing zone with time following the passage of the re-shock and before the arrival of the reflected rarefaction wave is found. Moreover, when the mixing zone width is plotted as a function of the distance travelled, the growth slope is found to be independent of the re-shock strength. A comparison of the experimental results with direct numerical simulation calculations reveals that the linear growth rate of the mixing zone is the result of a bubble competition process.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76E17 Interfacial stability and instability in hydrodynamic stability
76L05 Shock waves and blast waves in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.869202 · Zbl 1185.76625 · doi:10.1063/1.869202
[2] Nikiforov, Sov. Phys. Dokl. 40 pp 333– (1995)
[3] Zaitsev, Sov. Phys. Dokl. 30 pp 579– (1985)
[4] DOI: 10.1016/0167-2789(84)90512-8 · doi:10.1016/0167-2789(84)90512-8
[5] DOI: 10.1007/BF01416035 · doi:10.1007/BF01416035
[6] DOI: 10.1098/rspa.1950.0052 · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[7] DOI: 10.1016/0167-2789(89)90089-4 · Zbl 0692.76052 · doi:10.1016/0167-2789(89)90089-4
[8] DOI: 10.1007/BF01015969 · doi:10.1007/BF01015969
[9] DOI: 10.2514/2.1996 · doi:10.2514/2.1996
[10] DOI: 10.1063/1.881318 · doi:10.1063/1.881318
[11] DOI: 10.1088/0741-3335/43/9/301 · doi:10.1088/0741-3335/43/9/301
[12] DOI: 10.1086/146048 · doi:10.1086/146048
[13] DOI: 10.1103/PhysRevLett.54.430 · doi:10.1103/PhysRevLett.54.430
[14] DOI: 10.1063/1.868845 · doi:10.1063/1.868845
[15] DOI: 10.1063/1.858637 · doi:10.1063/1.858637
[16] DOI: 10.1103/PhysRevA.39.5812 · doi:10.1103/PhysRevA.39.5812
[17] Brouillette, Current Topics in Shock Waves: 17th International Symposium on Shock Waves and Shock Tubes pp 284– (1989)
[18] DOI: 10.1007/s001930000053 · doi:10.1007/s001930000053
[19] DOI: 10.1086/313364 · doi:10.1086/313364
[20] DOI: 10.1063/1.870309 · Zbl 1149.76361 · doi:10.1063/1.870309
[21] Andronov, Sov. Phys. Dokl. 27 pp 393– (1982)
[22] Andronov, Sov. Phys. JETP 44 pp 424– (1976)
[23] DOI: 10.1103/PhysRevLett.74.534 · doi:10.1103/PhysRevLett.74.534
[24] DOI: 10.1103/PhysRevLett.72.2867 · doi:10.1103/PhysRevLett.72.2867
[25] Strutt, Scientific Papers pp 200– (1900)
[26] Srebro, Laser Particle Beams 21 pp 347– (2003)
[27] DOI: 10.1103/PhysRevE.76.026319 · doi:10.1103/PhysRevE.76.026319
[28] DOI: 10.1086/313321 · doi:10.1086/313321
[29] DOI: 10.1002/cpa.3160130207 · doi:10.1002/cpa.3160130207
[30] DOI: 10.1016/0167-2789(84)90513-X · doi:10.1016/0167-2789(84)90513-X
[31] DOI: 10.1109/TSMC.1979.4310076 · doi:10.1109/TSMC.1979.4310076
[32] DOI: 10.1063/1.1362529 · doi:10.1063/1.1362529
[33] DOI: 10.1063/1.871655 · doi:10.1063/1.871655
[34] DOI: 10.1016/0375-9601(96)00021-7 · Zbl 1073.76551 · doi:10.1016/0375-9601(96)00021-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.