×

zbMATH — the first resource for mathematics

Euler scheme for reflected stochastic differential equations. (English) Zbl 0824.60062
Summary: Using some exponential variables in the time discretization of some reflected stochastic differential equations yields the same rate of convergence as in the usual Euler-Maruyama scheme.

MSC:
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C99 Probabilistic methods, stochastic differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chitashvili, R. J.; Lazrieva, N. L.: Strong solutions of stochastic differential equations with boundary conditions. Stochastics 5, 225-309 (1981) · Zbl 0479.60062
[2] Kinkladze, G. N.: Thesis. (1983)
[3] Kloeden, P.; Platen, E.: Numerical solution of stochastic differential equations. (1992) · Zbl 0752.60043
[4] Lépingle, D.: Un schéma d’euler pour équations différentielles stochastiques réfléchies. C.R.A.S. Paris 316, 601-605 (1993) · Zbl 0771.60046
[5] Y. Liu, Numerical approaches to reflected diffusion processes, to appear.
[6] Lions, P. L.; Sznitman, A. S.: Stochastic differential equations with reflecting boundary conditions. Comm. pure appl. Math. 37, 511-537 (1981) · Zbl 0598.60060
[7] Pardoux, E.; Talay, D.: Discretization and simulation of stochastic differential equations. Acta appl. Math. 3, 23-47 (1985) · Zbl 0554.60062
[8] Saisho, Y.: Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. theory rel. Fields 74, 455-477 (1987) · Zbl 0591.60049
[9] Seshadri, V.: Exponential models, Brownian motion, and independence. Canad. J. Stat. 16, 209-221 (1988) · Zbl 0677.62010
[10] Shepp, L. A.: The joint density of the maximum and its location for a Wiener process with drift. J. appl. Probab. 16, 423-427 (1979) · Zbl 0403.60072
[11] Slomiński, L.: On approximation of solutions of multidimensional sde’s with reflecting boundary conditions. Stoch. proc. Appl. 50, 197-220 (1994) · Zbl 0799.60055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.