×

Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. (English) Zbl 1415.76555

Summary: To investigate the effects of the nozzle-exit conditions on jet flow and sound fields, large-eddy simulations of an isothermal Mach 0.9 jet issued from a convergent-straight nozzle are performed at a diameter-based Reynolds number of \(1\times 10^6\). The simulations feature near-wall adaptive mesh refinement, synthetic turbulence and wall modelling inside the nozzle. This leads to fully turbulent nozzle-exit boundary layers and results in significant improvements for the flow field and sound predictions compared with those obtained from the typical approach based on laminar flow in the nozzle. The far-field pressure spectra for the turbulent jet match companion experimental measurements, which use a boundary-layer trip to ensure a turbulent nozzle-exit boundary layer to within 0.5 dB for all relevant angles and frequencies. By contrast, the initially laminar jet results in greater high-frequency noise. For both initially laminar and turbulent jets, decomposition of the radiated noise into azimuthal Fourier modes is performed, and the results show similar azimuthal characteristics for the two jets. The axisymmetric mode is the dominant source of sound at the peak radiation angles and frequencies. The first three azimuthal modes recover more than 97% of the total acoustic energy at these angles and more than 65% (i.e. error less than 2 dB) for all angles. For the main azimuthal modes, linear stability analysis of the near-nozzle mean-velocity profiles is conducted in both jets. The analysis suggests that the differences in radiated noise between the initially laminar and turbulent jets are related to the differences in growth rate of the Kelvin-Helmholtz mode in the near-nozzle region.

MSC:

76Q05 Hydro- and aero-acoustics
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Andersson, N., Eriksson, L. E. & Davidson, L.2005 Effects of inflow conditions and subgrid model on LES for turbulent jets. AIAA Paper 2005-2925.
[2] Bodart, J. & Larsson, J.2011Wall-modeled large eddy simulation in complex geometries with application to high-lift devices. In Annual Research Briefs, Center for Turbulence Research, Stanford University.
[3] Bodony, D. J.; Lele, S. K., On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets, Phys. Fluids, 17, 8, (2005) · Zbl 1187.76056
[4] Bodony, D. J.; Lele, S. K., Current status of jet noise predictions using large-eddy simulation, AIAA J., 46, 346-380, (2008) · doi:10.2514/1.24475
[5] Bogey, C.; Bailly, C., Effects of inflow conditions and forcing on subsonic jet flows and noise, AIAA J., 43, 5, 1000-1007, (2005) · doi:10.2514/1.7465
[6] Bogey, C.; Bailly, C., Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets, J. Fluid Mech., 663, 507-538, (2010) · Zbl 1205.76238 · doi:10.1017/S0022112010003605
[7] Bogey, C.; Barré, S.; Bailly, C., Direct computation of the noise generated by subsonic jets originating from a straight pipe nozzle, Intl J. Aeroacoust., 7, 1, 1-21, (2008) · doi:10.1260/147547208784079917
[8] Bogey, C.; Marsden, O., Simulations of initially highly disturbed jets with experiment-like exit boundary layers, AIAA J., 54, 1299-1312, (2016) · doi:10.2514/1.J054426
[9] Bogey, C.; Marsden, O.; Bailly, C., Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers, Phys. Fluids, 23, 3, (2011)
[10] Bogey, C.; Marsden, O.; Bailly, C., Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105, J. Fluid Mech., 701, 352-385, (2012) · Zbl 1248.76125 · doi:10.1017/jfm.2012.162
[11] Bradshaw, P.; Ferriss, D. H.; Johnson, R. F., Turbulence in the noise-producing region of a circular jet, J. Fluid Mech., 19, 591-624, (1964) · Zbl 0123.42402 · doi:10.1017/S0022112064000945
[12] Brès, G. A., Bose, S. T., Ham, F. E. & Lele, S. K.2014 Unstructured large eddy simulations for nozzle interior flow modeling and jet noise predictions. AIAA Paper 2014-2601.
[13] Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K.2013 Nozzle wall modeling in unstructured large eddy simulations for hot supersonic jet predictions. AIAA Paper 2013-2142.
[14] Brès, G. A.; Ham, F. E.; Nichols, J. W.; Lele, S. K., Unstructured large eddy simulations of supersonic jets, AIAA J., 55, 4, 1164-1184, (2017) · doi:10.2514/1.J055084
[15] Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Colonius, T. & Lele, S. K.2015 Large eddy simulation for jet noise: the importance of getting the boundary layer right. AIAA Paper 2015-2535.
[16] Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Towne, A., Schmidt, O. T., Colonius, T., Cavalieri, A. V. G. & Lele, S. K.2016 Large eddy simulation for jet noise: azimuthal decomposition and intermittency of the radiated sound. AIAA Paper 2016-3050.
[17] Bridges, J. E.; Hussain, A. K. M. F., Roles of initial conditions and vortex pairing in jet noise, J. Sound Vib., 117, 2, 289-331, (1987) · doi:10.1016/0022-460X(87)90540-2
[18] Brown, C. & Bridges, J.2006 Small hot jet acoustic rig validation. Tech. Rep. TM 2006-214234. NASA.
[19] Bühler, S.; Kleiser, L.; Bogey, C., Simulation of subsonic turbulent nozzle jet flow and its near-field sound, AIAA J., 52, 8, 1653-1669, (2014) · doi:10.2514/1.J052673
[20] Bühler, S.; Obrist, D.; Kleiser, L., Laminar and turbulent nozzle-jet flows and their acoustic near-field, Phys. Fluids, 26, 8, (2014)
[21] Cavalieri, A. V. G.; Daviller, G.; Comte, P.; Jordan, P.; Tadmor, G.; Gervais, Y., Using large eddy simulation to explore sound-source mechanism in jets, J. Sound Vib., 330, 4098-4113, (2011) · doi:10.1016/j.jsv.2011.04.018
[22] Cavalieri, A. V. G.; Jordan, P.; Colonius, T.; Gervais, Y., Axisymmetric superdirectivity in subsonic jets, J. Fluid Mech., 704, 388-420, (2012) · Zbl 1246.76005 · doi:10.1017/jfm.2012.247
[23] Cavalieri, A. V. G.; Rodríguez, D.; Jordan, P.; Colonius, T.; Gervais, Y., Wavepackets in the velocity field of turbulent jets, J. Fluid Mech., 730, 559-592, (2013) · Zbl 1291.76280 · doi:10.1017/jfm.2013.346
[24] Choi, H.; Moin, P., Grid-point requirements for large eddy simulation: Chapman’s estimates revisited, Phys. Fluids, 24, 1, (2012)
[25] Cohen, J.; Wygnanski, I., The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle, J. Fluid Mech., 176, 191-219, (1987) · doi:10.1017/S0022112087000624
[26] Crighton, D. G.; Gaster, M., Stability of slowly diverging jet flow, J. Fluid Mech., 88, 2, 397-413, (1976) · Zbl 0338.76021 · doi:10.1017/S0022112076002176
[27] Ffowcs Williams, J. E.; Hawkings, D. L., Sound generation by turbulence and surfaces in arbitrary motion, Phil. Trans. R. Soc. Lond. A, 264, 321-342, (1969) · Zbl 0182.59205 · doi:10.1098/rsta.1969.0031
[28] Fontaine, R. A.; Elliot, G. S.; Austin, J. M.; Freund, J. B., Very near-nozzle shear-layer turbulence and jet noise, J. Fluid Mech., 770, 27-51, (2015) · doi:10.1017/jfm.2015.119
[29] Freund, J. B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., 35, 4, 740-742, (1997) · Zbl 0903.76081 · doi:10.2514/2.167
[30] Freund, J. B., Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, J. Fluid Mech., 438, 277-305, (2001) · Zbl 1013.76075 · doi:10.1017/S0022112001004414
[31] Gottlieb, S.; Shu, W., Math. Comput., 67, 221, 73-85, (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[32] Gudmundsson, K.; Colonius, T., Instability wave models for the near-field fluctuations of turbulent jets, J. Fluid Mech., 689, 97-128, (2011) · Zbl 1241.76203 · doi:10.1017/jfm.2011.401
[33] Hill, G.; Jenkins, R. C.; Gilbert, B. L., Effects of the initial boundary-layer state on turbulent jet mixing, AIAA J., 14, 11, 1513-1514, (1976) · doi:10.2514/3.61491
[34] Husain, Z. D.; Hussain, A. K. M. F., Axisymmetric mixing layer: influence of the initial and boundary conditions, AIAA J., 17, 1, 48-55, (1979) · doi:10.2514/3.61061
[35] Hussain, A. K. M. F.; Zedan, M. F., Effects of the initial condition on the axisymmetric free shear layer: effects of the initial fluctuation level, Phys. Fluids, 21, 9, 1475-1481, (1978) · doi:10.1063/1.862410
[36] Hussain, A. K. M. F.; Zedan, M. F., Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness, Phys. Fluids, 21, 7, 1100-1112, (1978) · doi:10.1063/1.862349
[37] Jordan, P.; Colonius, T., Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., 45, 173-195, (2013) · Zbl 1359.76257 · doi:10.1146/annurev-fluid-011212-140756
[38] Juvé, D.; Sunyach, M.; Comte-Bellot, G., Filtered azimuthal correlations in the acoustic far field of a subsonic jet, AIAA J., 17, 1, 112-113, (1979) · doi:10.2514/3.61076
[39] Karon, A. Z. & Ahuja, K. K.2013 Effect of nozzle-exit boundary layer on jet noise. AIAA Paper 2013-0615.
[40] Kawai, S.; Larsson, J., Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy, Phys. Fluids, 24, 1, (2012) · doi:10.1063/1.3678331
[41] Klein, M.; Sadiki, A.; Janicka, J., A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys., 186, 2, 652-665, (2003) · Zbl 1047.76522 · doi:10.1016/S0021-9991(03)00090-1
[42] Kopiev, V., Chernyshev, S., Faranosov, G., Zaitsev, M. & Belayev, I.2010 Correlations of jet noise azimuthal components and their role in source identification. AIAA Paper 2010-4018.
[43] Larsson, J.; Kawai, S.; Bodart, J.; Bermejo-Moreno, I., Large eddy simulation with modeled wall-stress: recent progress and future directions, JSME Mech. Engng Rev., 3, 1, 15-00418, (2016)
[44] Lesshafft, L.; Huerre, P., Linear impulse response in hot round jets, Phys. Fluids, 19, 2, (2007) · Zbl 1146.76462
[45] Lockard, D. P., An efficient, two-dimensional implementation of the Ffowcs Williams and Hawkings equation, J. Sound Vib., 229, 897-911, (2000) · doi:10.1006/jsvi.1999.2522
[46] Lorteau, M.; Cléro, F.; Vuillot, F., Analysis of noise radiation mechanisms in a hot subsonic jet from a validated large eddy simulation solution, Phys. Fluids, 27, 7, (2015) · doi:10.1063/1.4926792
[47] Mani, A., Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment, J. Comput. Phys., 231, 704-7016, (2012) · Zbl 1391.76675 · doi:10.1016/j.jcp.2011.10.017
[48] Mendez, S.; Shoeybi, M.; Sharma, A.; Ham, F. E.; Lele, S. K.; Moin, P., Large-eddy simulations of perfectly expanded supersonic jets using an unstructured solver, AIAA J., 50, 5, 1103-1118, (2012) · doi:10.2514/1.J051211
[49] Michalke, A., Survey on jet instability theory, Prog. Aerosp. Sci., 21, 159-199, (1984) · doi:10.1016/0376-0421(84)90005-8
[50] Michalke, A.; Fuchs, H. V., On turbulence and noise of an axisymmetric shear flow, J. Fluid Mech., 70, 179-205, (1975) · Zbl 0312.76051 · doi:10.1017/S0022112075001966
[51] Morris, P. J.; Long, L. N.; Scheidegger, T. E.; Boluriaan, S., Simulations of supersonic jet noise, Intl J. Aeroacoust., 1, 1, 17-41, (2002) · doi:10.1260/1475472021502659
[52] Petersen, R. A.; Samet, M. M., On the preferred mode of jet instability, J. Fluid Mech., 194, 1, 153-173, (1988) · doi:10.1017/S0022112088002939
[53] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech., 34, 349-374, (2002) · Zbl 1006.76041 · doi:10.1146/annurev.fluid.34.082901.144919
[54] Pouangué, A. F., Sanjosé, M. & Moreau, S.2012 Jet noise simulation with realistic nozzle geometries using fully unstructured LES solver. AIAA Paper 2012-2190.
[55] Sandberg, R. D.; Sandham, N. D.; Suponitsky, V., DNS of a compressible pipe flow exiting into a coflow, Intl J. Heat Fluid Flow, 35, 33-44, (2012) · doi:10.1016/j.ijheatfluidflow.2012.01.006
[56] Sasaki, K.; Cavalieri, A. V. G.; Jordan, P.; Schmidt, O. T.; Colonius, T.; Brès, G. A., High-frequency wavepackets in turbulent jets, J. Fluid Mech., 830, R2, (2017) · Zbl 1421.76206 · doi:10.1017/jfm.2017.659
[57] Scarano, F., Iterative image deformation methods in PIV, Meas. Sci. Tech., 13, 1, R1-R19, (2002) · doi:10.1088/0957-0233/13/1/201
[58] Schlichting, H.; Gertsen, K., Boundary Layer Theory, (2000), Springer · Zbl 0940.76003 · doi:10.1007/978-3-642-85829-1
[59] Schmidt, O. T.; Towne, A.; Colonius, T.; Cavalieri, A. V. G.; Jordan, P.; Brès, G. A., Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability, J. Fluid Mech., 825, 1153-1181, (2017) · Zbl 1374.76074 · doi:10.1017/jfm.2017.407
[60] Shur, M. L.; Spalart, P. R.; Strelets, M. K., Noise prediction for increasingly complex jets. Part I. Methods and tests, Intl J. Aeroacoust., 4, 3-4, 213-246, (2005) · doi:10.1260/1475472054771376
[61] Shur, M. L.; Spalart, P. R.; Strelets, M. K., Noise prediction for increasingly complex jets. Part II. Applications, Intl J. Aeroacoust., 4, 3-4, 247-266, (2005) · doi:10.1260/1475472054771385
[62] Shur, M. L.; Spalart, P. R.; Strelets, M. K., Noise prediction for underexpanded jets in static and flight conditions, AIAA J., 49, 9, 2000-2017, (2011) · doi:10.2514/1.J050776
[63] Spalart, P. R., Detached-eddy simulation, Annu. Rev. Fluid Mech., 41, 181-202, (2009) · Zbl 1159.76036 · doi:10.1146/annurev.fluid.010908.165130
[64] Suponitsky, V.; Sandham, N. D.; Morfey, C. L., Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jet, J. Fluid Mech., 658, 509-538, (2010) · Zbl 1205.76242 · doi:10.1017/S0022112010002375
[65] Suzuki, T.; Colonius, T., Instability waves in a subsonic round jet detected using a near-field phased microphone array, J. Fluid Mech., 565, 197-226, (2006) · Zbl 1104.76023 · doi:10.1017/S0022112006001613
[66] Towne, A.; Cavalieri, A. V. G.; Jordan, P.; Colonius, T.; Schmidt, O.; Jaunet, V.; Brès, G. A., Acoustic resonance in the potential core of subsonic jets, J. Fluid Mech., 825, 1113-1152, (2017) · Zbl 1374.76075 · doi:10.1017/jfm.2017.346
[67] Trefethen, L. N., Spectral Methods in MATLAB, (2000), Society for Industrial Mathematics · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[68] Uzun, A.; Hussaini, Y. M., Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation, J. Theor. Comput. Fluid Dyn., 21, 4, 291-321, (2007) · Zbl 1161.76575 · doi:10.1007/s00162-007-0048-z
[69] Uzun, A.; Lyrintsis, A. S.; Blaisdell, G. A., Coupling of integral acoustics methods with LES for jet noise prediction, Intl J. Aeroacoust., 3, 4, 297-346, (2004) · doi:10.1260/1475472043499290
[70] Vreman, A., An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications, Phys. Fluids, 16, 10, 3670-3681, (2004) · Zbl 1187.76543 · doi:10.1063/1.1785131
[71] Vuillot, F., Lupoglazoff, N., Lorteau, M. & Cléro, F.2016 Large eddy simulation of jet noise from unstructured grids with turbulent nozzle boundary layer. AIAA Paper 2016-3046.
[72] Westerweel, J.; Scarano, F., Universal outlier detection for PIV data, Exp. Fluids, 39, 6, 1096-1100, (2005) · doi:10.1007/s00348-005-0016-6
[73] Wieneke, B., Stereo-PIV using self-calibration on particle images, Exp. Fluids, 39, 267-280, (2005) · doi:10.1007/s00348-005-0962-z
[74] Zaman, K. B. M. Q., Effect of initial condition on subsonic jet noise, AIAA J., 23, 9, 1370-1373, (1985) · doi:10.2514/3.9094
[75] Zaman, K. B. M. Q., Asymptotic spreading rates of initially compressible jets: experiment and analysis, Phys. Fluids, 10, 10, 2652-2660, (1998) · doi:10.1063/1.869778
[76] Zaman, K. B. M. Q., Spreading characteristics of compressible jets from nozzles of various geometries, J. Fluid Mech., 383, 197-228, (1999) · Zbl 0941.76533 · doi:10.1017/S0022112099003833
[77] Zaman, K. B. M. Q., Effect of initial boundary-layer state on subsonic jet noise, AIAA J., 50, 8, 1784-1795, (2012) · doi:10.2514/1.J051712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.