×

Design of an adaptive missile autopilot considering the boost phase using the SDRE method and neural networks. (English) Zbl 1404.93021

Summary: An adaptive autopilot to control a skid-to-turn missile during its boost phase is designed using the state-dependent Riccati equation (SDRE) method and neural networks (NN). To address the rapid changes in parameters during the boost phase, the translational and rotational motions of the missile are modeled with time-varying velocity and inertial parameters. The autopilot with a two-loop structure is designed to perform integrated roll-pitch-yaw control of the missile with cross-coupled dynamics; each loop has a baseline controller and an adaptive controller. The baseline controller is designed using the SDRE method for reference command tracking in a nominal environment, and the adaptive controller is designed based on NN to manage uncertainty during the boost phase. Stability analysis of the closed-loop system is performed, and the performance of the proposed autopilot is demonstrated by numerical simulation.

MSC:

93C40 Adaptive control/observation systems
93B51 Design techniques (robust design, computer-aided design, etc.)
68T05 Learning and adaptive systems in artificial intelligence
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Zarchan, Tactical and Strategic Missile Guidance-Fifth Edition, Progress in Astronautics and Aeronautics, vol. 219, AIAA, Reston, VA, 2007.; P. Zarchan, Tactical and Strategic Missile Guidance-Fifth Edition, Progress in Astronautics and Aeronautics, vol. 219, AIAA, Reston, VA, 2007.
[2] C.P. Mracek, D.B. Ridgely, Missile longitudinal autopilots: comparison of multiple three loop topologies, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, 2005, AIAA 2005-6380.; C.P. Mracek, D.B. Ridgely, Missile longitudinal autopilots: comparison of multiple three loop topologies, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, 2005, AIAA 2005-6380.
[3] L. Defu, F. Junfang, Q. Zaikang, M. Yu, Analysis and improvement of missile three loop autopilot, J. Syst. Eng. Electron. 20 (4) (2009) 844-851.; L. Defu, F. Junfang, Q. Zaikang, M. Yu, Analysis and improvement of missile three loop autopilot, J. Syst. Eng. Electron. 20 (4) (2009) 844-851.
[4] C.P. Mracek, D.B. Ridgely, Missile longitudinal autopilots: connections between optimal control and classical topologies, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, 2005, AIAA 2005-6381.; C.P. Mracek, D.B. Ridgely, Missile longitudinal autopilots: connections between optimal control and classical topologies, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, 2005, AIAA 2005-6381.
[5] P. Jackson, Applying \(μ\); P. Jackson, Applying \(μ\)
[6] Ferreres, G.; M׳Saad, M., Parametric robustness evaluation of a \(\mathcal{H}_\infty\) missile autopilot, J. Guid. Control Dyn., 19, 3, 621-627, (1996) · Zbl 0850.93642
[7] Mahmood, A.; Kim, Y.; Park, J., Robust \(\mathcal{H}_\infty\) autopilot design for agile missile with time-varying parameters, Trans. Aerosp. Electron. Syst., 50, 4, 3082-3089, (2014)
[8] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., New results on \(\mathcal{H}_\infty\) dynamic output feedback control for Markovian jump systems with time-varying delay and defective mode information, Optim. Control Appl. Methods, 35, 6, 656-675, (2014) · Zbl 1305.93184
[9] Wei, Y.; Qiu, J.; Fu, S., Mode-dependent nonrational output feedback control for continuous-time semi-markovian jump systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 16, 52-71, (2015) · Zbl 1310.93075
[10] Wei, Y.; Wang, M.; Qiu, J., New approach to delay-dependent \(\mathcal{H}_\infty\) filtering for discrete-time markovian jump systems with time-varying delay and incomplete transition descriptions, IET Control Theory Appl., 7, 5, 684-696, (2013)
[11] Wei, Y.; Qiu, J.; Karimi, H. R., Quantized \(\mathcal{H}_\infty\) filtering for continuous-time Markovian jump systems with deficient mode information, Asian J. Control, 17, 5, 1914-1923, (2015) · Zbl 1333.93245
[12] Shamma, J. S.; Cloutier, J. R., Gain-scheduled missile autopilot design using linear parameter varying transformations, J. Guid. Control Dyn., 16, 2, 256-263, (1993)
[13] Stilwell, D. J., State-space interpolation for a gain-scheduled autopilot, J. Guid. Control Dyn., 24, 3, 460-465, (2001)
[14] Theodoulis, S.; Duc, G., Missile autopilot designgain-scheduling and the gap metric, J. Guid. Control Dyn., 32, 3, 986-996, (2009)
[15] Leith, D. J.; Leithead, W. E., Survey of gain-scheduling analysis & design, Int. J. Control, 73, 11, 1001-1025, (2000) · Zbl 1006.93534
[16] Gratt, H. J.; McCowan, W. L., Feedback linearization autopilot design for the advanced kinetic energy missile boost phase, J. Guid. Control Dyn., 18, 5, 945-950, (1995)
[17] P.K. Menon, M. Yousefpor, Design of nonlinear autopilots for high angle of attack missiles, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, 1996, AIAA 1996-3913.; P.K. Menon, M. Yousefpor, Design of nonlinear autopilots for high angle of attack missiles, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, 1996, AIAA 1996-3913.
[18] F. Peter, F. Hellmundt, F. Holzapfel, F. Chew, Anti-windup command filtered adaptive backstepping autopilot design for a tail-controlled air-defense missile, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, MA, 2013, AIAA 2013-5013.; F. Peter, F. Hellmundt, F. Holzapfel, F. Chew, Anti-windup command filtered adaptive backstepping autopilot design for a tail-controlled air-defense missile, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, MA, 2013, AIAA 2013-5013.
[19] Mattei, G.; Monaco, S., Nonlinear autopilot design for an asymmetric missile using robust backstepping control, J. Guid. Control Dyn., 37, 5, 1462-1476, (2014)
[20] Shima, T.; Idan, M.; Golan, O. M., Sliding-mode control for integrated missile autopilot guidance, J. Guid. Control Dyn., 29, 2, 250-260, (2006)
[21] Shtessel, Y. B.; Tournes, C. H., Integrated higher-order sliding mode guidance and autopilot for dual control missiles, J. Guid. Control Dyn., 32, 1, 79-94, (2009)
[22] Lee, Y.; Kim, Y.; Moon, G.; Jun, B.-E., Sliding-mode-based missile-integrated attitude control schemes considering velocity change, J. Guid. Control Dyn., 39, 3, 423-436, (2016)
[23] C.P. Mracek, J.R. Cloutier, Full envelope missile longitudinal autopilot design using the state-dependent Riccati equation method, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997, AIAA 1997-3767.; C.P. Mracek, J.R. Cloutier, Full envelope missile longitudinal autopilot design using the state-dependent Riccati equation method, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997, AIAA 1997-3767.
[24] T. Cimen, A generic approach to missile autopilot design using state-dependent nonlinear control, in: Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011, pp. 9587-9600.; T. Cimen, A generic approach to missile autopilot design using state-dependent nonlinear control, in: Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011, pp. 9587-9600.
[25] J.R. Cloutier, D.T. Stansbery, The capabilities and art of state-dependent Riccati equation-based design, in: Proceedings of the IEEE American Control Conference, Anchorage, AK, 2002, pp. 86-91.; J.R. Cloutier, D.T. Stansbery, The capabilities and art of state-dependent Riccati equation-based design, in: Proceedings of the IEEE American Control Conference, Anchorage, AK, 2002, pp. 86-91.
[26] Barton, D. K.; Falcone, R.; Kleppner, D.; Lamb, F. K.; Lau, M. K.; Lynch, H. L.; Moncton, D.; Montague, D.; Mosher, D. E.; Priedhorsky, W.; Tigner, M.; Vaughan, D. R., Report of the american physical society study group on boost-phase intercept systems for national missile defensescientific and technical issues, Rev. Mod. Phys., 76, 3, 1-424, (2004)
[27] Wang, T.; Gao, H.; Qiu, J., A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw. Learn. Syst., 27, 2, 416-425, (2016)
[28] Qiu, J.; Ding, S. X.; Gao, H.; Yin, S., Fuzzy-model-based reliable static output feedback \(\mathcal{H}_\infty\) control of nonlinear hyperbolic PDE systems, IEEE Trans. Fuzzy Syst., 24, 2, 388-400, (2016)
[29] Wang, T.; Zhang, Y.; Qiu, J.; Gao, H., Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements, IEEE Trans. Fuzzy Syst., 23, 2, 302-312, (2015)
[30] Y. Wei, J. Qiu, H.-K. Lam, L. Wu, Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic system, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2016.2566810; Y. Wei, J. Qiu, H.-K. Lam, L. Wu, Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic system, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2016.2566810
[31] L. Li, S.X. Ding, J. Qiu, Y. Yang, Real-time fault detection approach for nonlinear systems and its asynchronous T-S fuzzy observer-based implementation, IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2015.2513438; L. Li, S.X. Ding, J. Qiu, Y. Yang, Real-time fault detection approach for nonlinear systems and its asynchronous T-S fuzzy observer-based implementation, IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2015.2513438
[32] L. Li, S.X. Ding, J. Qiu, Y. Yang, Y. Zhang, Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2016.2514371; L. Li, S.X. Ding, J. Qiu, Y. Yang, Y. Zhang, Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2016.2514371
[33] Hunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P. J., Neural networks for control systems - a survey, Automatica, 28, 6, 1083-1112, (1992) · Zbl 0763.93004
[34] Lee, T.; Kim, Y., Nonlinear adaptive flight control using backstepping and neural networks controller, J. Guid. Control Dyn., 24, 4, 675-682, (2001)
[35] Leitner, J.; Calise, A.; Prasad, J. V.R., Analysis of adaptive neural networks for helicopter flight control, J. Guid. Control Dyn., 20, 5, 972-979, (1997) · Zbl 0900.93276
[36] McFarland, M. B.; Calise, A. J., Adaptive nonlinear control of agile antiair missiles using neural networks, IEEE Trans. Control Syst. Technol., 8, 5, 749-756, (2000)
[37] P.K. Menon, V.R. Iragavarapu, E.J. Ohlmeyer, Nonlinear missile autopilot design using time-scale separation, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997, AIAA 1997-3765.; P.K. Menon, V.R. Iragavarapu, E.J. Ohlmeyer, Nonlinear missile autopilot design using time-scale separation, in: Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997, AIAA 1997-3765.
[38] Bryson, A. E., Dynamic Optimization, (1999), Addison-Wesley: Addison-Wesley Menlo Park, CA
[39] J. Lee, Y. Lee, Y. Kim, G. Moon, B.-E. Jun, Adaptive SDRE based boost-phase missile autopilot design using single and modular neural networks, in: Proceedings of the 1st IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles, Seville, Spain, 2015, pp. 108-113.; J. Lee, Y. Lee, Y. Kim, G. Moon, B.-E. Jun, Adaptive SDRE based boost-phase missile autopilot design using single and modular neural networks, in: Proceedings of the 1st IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles, Seville, Spain, 2015, pp. 108-113.
[40] Nelson, R. C., Flight Stability and Automatic Control-Second Edition, (1998), McGraw-Hill: McGraw-Hill New York, NY
[41] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses: Theory and Applications, (1974), Wiley: Wiley New York, NY · Zbl 0305.15001
[42] Cimen, T., Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis, J. Guid. Control Dyn., 35, 4, 1025-1047, (2012)
[43] Hagan, M. T.; Demuth, H. B.; Jesus, O. D., An introduction to the use of neural networks in control systems, Int. J. Robust Nonlinear Control, 12, 11, 959-985, (2002) · Zbl 1011.93003
[44] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Netw., 2, 5, 359-366, (1989) · Zbl 1383.92015
[45] Lewis, F. L.; Yesildirek, A.; Liu, K., Multilayer neural-net robot controller with guaranteed tracking performance, IEEE Trans. Neural Netw., 7, 2, 388-399, (1996)
[46] Horn, R. A.; Johnson, C. R., Matrix Analysis, (1985), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0576.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.