zbMATH — the first resource for mathematics

Intertwining operators and Hirota bilinear equations. (English) Zbl 0860.17016
Theor. Math. Phys. 104, No. 1, 879-891 (1995) and Teor. Mat. Fiz. 104, No. 1, 144-157 (1995).
The authors gave an interpretation of the Hirota relations for the \(\tau\)-functions of hierarchies of integrable equations in terms of intertwining operators. The procedure of getting bilinear equations for the \(\tau\)-function is divided into two steps: to find some (commutative) algebra which bosonizes the representation and to find bilinear relations for the matrix elements of the representation. This interpretation gives the possibility of generalizing the relations to the case of finite-dimensional Lie algebras and quantized universal enveloping algebras.

17B37 Quantum groups (quantized enveloping algebras) and related deformations
35Q58 Other completely integrable PDE (MSC2000)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
16S30 Universal enveloping algebras of Lie algebras
Full Text: DOI arXiv
[1] V. Kac,Infinite-Dimensional Lie Algebras, Cambridge Univ. Press (1985). · Zbl 0574.17010
[2] V. G. Kac and M. Wakimoto, ”Exceptional hierarchies of soliton equations,” in:Proc. Symposia in Pure Math.,49, 191–237 (1989). · Zbl 0691.17014
[3] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, ”Transformation groups for soliton equations,” in:Nonlinear integrable systems – classical theory and quantum theory, World Scientific (1983). · Zbl 0571.35098
[4] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, and A. Nakayashiki, ”Diagonalization of theXXZ Hamiltonian by vertex operators,”Commun. Math. Phys.,151, 89–153 (1993). · Zbl 0769.17020
[5] K. Ueno and K. Takasaki, ”Toda lattice hierarchy,”Adv. Studies Pure Math. (1984). · Zbl 0577.58020
[6] M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models. · Zbl 0828.17018
[7] I. B. Frenkel and N. Yu. Reshetikhin, ”Quantum affine algebras and holonomic difference equations,”Commun. Math. Phys.,146, 1–60 (1992). · Zbl 0760.17006
[8] A. B. Zamolodchikov and Al. B. Zamolodchikov, ”FactorizedS-matrix in two dimensions as the exact solutions of certain relativistic quantum field theory models,”Ann. Phys.,120, 253–291 (1979).
[9] L. D. Faddeev, ”Quantum completely integrable models in field theory,”Sov. Sci. Rev. Math. Phys.,C1, 107–155 (1980). · Zbl 0569.35064
[10] L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, ”Quantization of Lie groups and Lie algebras,”Algebra Analiz,1, 178–201 (1989).
[11] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov,Generalized Hirota equations and representation theory, Preprint ITEP M-2/94, hep-th/9405011 (1994). · Zbl 0985.37510
[12] Galindo Fronsdal,The universal T-matrix, Preprint UCLA/93/TEP/2 (1993).
[13] A. N. Kirillov and N. Yu. Reshetikhin, ”q-Weyl group and a multiplicative formula for universalR-matrices,”Commun. Math. Phys.,134, 421–431 (1990). · Zbl 0723.17014
[14] S. M. Khoroshkin and V. N. Tolstoy, ”Universal R-matrix for quantized (super)algebras,”Commun. Math. Phys.,141, 599–617 (1991). · Zbl 0744.17015
[15] S. Z. Levendorskii and Ya. S. Soibelman, ”Some application of quantum Weyl groups. The multiplicative formula for the universalR-matrix for simple Lie algebras,”J. Geom. Phys. 7, No. 4, 1–14 (1990). · Zbl 0715.15010
[16] S. Steinberg,Lectures on Chevalley Groups, Yale Univ. Press (1967). · Zbl 0164.34302
[17] A. Morozov and L. Vinet,Free-Field Representation of Group Elements for Simple Quantum Groups, Preprint ITEP-M3/94, CRM-2202, hep-th/9409093 (1994). · Zbl 0980.17007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.