×

Estimation and classification of BOLD responses over multiple trials. (English) Zbl 1175.62116

Summary: We model functional magnetic resonance imaging (fMRI) data for event-related experiment data using a fourth degree spline to fit voxel specific blood oxygenation level-dependent (BOLD) responses. The data are preprocessed for removing long term temporal components such as drifts using wavelet approximations. The spatial dependence is incorporated in the data by the application of a 3D Gaussian spatial filter. The methodology assigns an activation score to each trial based on the voxel specific characteristics of the response curve. The proposed procedure has capability of being fully automated and it produces activation images based on overall scores assigned to each voxel. The methodology is illustrated on real data from an event-related design experiment of visually guided saccades (VGS).

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
65T60 Numerical methods for wavelets
92C55 Biomedical imaging and signal processing
62H35 Image analysis in multivariate analysis
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Angelidis P. A., Magn. Reson. Imag. 12 pp 1111– (1994) · doi:10.1016/0730-725X(94)91243-P
[2] Brammer M. J., Hum. Brain Mapp. 6 pp 378– (1998) · doi:10.1002/(SICI)1097-0193(1998)6:5/6<378::AID-HBM9>3.0.CO;2-7
[3] Buckner R. L., Hum. Brain Mapp. 6 pp 378– (1998) · doi:10.1002/(SICI)1097-0193(1998)6:5/6<373::AID-HBM8>3.0.CO;2-P
[4] Bullmore E., Statist. Meth. Med. Res. 12 pp 375– (2003) · Zbl 1121.62581 · doi:10.1191/0962280203sm339ra
[5] Bullmore E., Hum. Brain Mapp. 12 pp 61– (2001) · doi:10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W
[6] Buxton R. B., Magn. Reson. Med. 39 pp 855– (1998) · doi:10.1002/mrm.1910390602
[7] Carew J. D., NeuroImage 18 pp 950– (2003) · doi:10.1016/S1053-8119(03)00013-2
[8] Clark V. P., NeuroImage 17 pp 344– (2002) · doi:10.1006/nimg.2002.1100
[9] Dale A. M., Hum. Brain Mapp. 5 pp 329– (1997) · doi:10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
[10] Desco M., Hum. Brain Mapp. 14 pp 16– (2001) · doi:10.1002/hbm.1038
[11] Friman O., NeuroImage 22 pp 645– (2004) · doi:10.1016/j.neuroimage.2004.01.033
[12] Gibbons R. D., NeuroImage 22 pp 804– (2004) · doi:10.1016/j.neuroimage.2004.02.003
[13] Glover G. H., NeuroImage 9 pp 416– (1999) · doi:10.1006/nimg.1998.0419
[14] Luna B., Cereb. Cortex. 8 pp 40– (1998) · doi:10.1093/cercor/8.1.40
[15] Macey P. M., NeuroImage 22 pp 360– (2004) · doi:10.1016/j.neuroimage.2003.12.042
[16] Meyer F. G., Information Processing in Medical Imaging pp 232– (2001) · Zbl 0982.68623 · doi:10.1007/3-540-45729-1_25
[17] Muller K., J. Magn. Reson. Imag. 17 pp 20– (2003) · doi:10.1002/jmri.10219
[18] Postle B. R., Brain Res. Protoc. 5 pp 57– (2000) · doi:10.1016/S1385-299X(99)00053-7
[19] Raz J., NeuroImage 19 pp 226– (2003) · doi:10.1016/S1053-8119(03)00115-0
[20] Schacter D. L., NeuroImage 6 pp 259– (1997) · doi:10.1006/nimg.1997.0305
[21] Tanabe J., NeuroImage 15 pp 902– (2002) · doi:10.1006/nimg.2002.1053
[22] Weaver J. B., Magn. Reson. Med. 21 pp 288– (1991) · doi:10.1002/mrm.1910210213
[23] Zaroubi S., Magn. Reson. Imag. 18 pp 59– (2000) · doi:10.1016/S0730-725X(99)00100-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.