×

zbMATH — the first resource for mathematics

Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets. (English) Zbl 1419.62268
Summary: We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties of the target point process are studied. Simulation and inference procedures are discussed when a realization of the target point process is observed, depending on whether the thinned points are observed or not. The paper extends previous work by Dietrich Stoyan on interrupted point processes.

MSC:
62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Software:
ads; R; RandomFields; spatstat
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen , I. T. Hahn , U. 2015 Matérn thinned Cox processes
[2] Baddeley, Spatstat: an R package for analyzing spatial point patterns, J. Stat. Softw. 12 (6) pp 1– (2005) · doi:10.18637/jss.v012.i06
[3] Berthelsen, Non-parametric Bayesian inference for inhomogeneous Markov point processes, Aust. N.Z. J. Stat. 50 pp 257– (2008) · Zbl 1337.62298 · doi:10.1111/j.1467-842X.2008.00516.x
[4] Biscio, Quantifying repulsiveness of determinantal point processes, Bernoulli (2015) · Zbl 1343.60058
[5] Chiu, Stochastic geometry and its applications (2013) · doi:10.1002/9781118658222
[6] Cox, Stochastic point processes pp 55– (1972)
[7] Cressie, Statistics for spatial data (1993)
[8] Daley, An introduction to the theory of point processes. Volume I: elementary theory and methods (2003) · Zbl 1026.60061
[9] Diggle, Statistical analysis of spatial point patterns (2003) · Zbl 1021.62076
[10] Getis, Second-order neighborhood analysis of mapped point patterns, Ecology 68 pp 473– (1987) · doi:10.2307/1938452
[11] Goldstein, An attraction-repulsion point process model for respiratory syncytial virus infections, Biometrics 71 pp 376– (2015) · Zbl 1390.62261 · doi:10.1111/biom.12267
[12] Goreaud, Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses, J. Veg. Sci. 14 pp 681– (2003)
[13] Illian, Statistical analysis and modelling of spatial point patterns (2008) · Zbl 1197.62135
[14] Kautz, Desynchronizing effects of lightning strike disturbances on cyclic forest dynamics in mangrove plantations, Aquat. Bot. 95 pp 173– (2011) · doi:10.1016/j.aquabot.2011.05.005
[15] Kendall, Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes, Adv. Appl. Probab. 32 pp 844– (2000) · Zbl 1123.60309 · doi:10.1239/aap/1013540247
[16] Kingman, Poisson processes (1993)
[17] Lantuéjoul, Geostatistical simulation: models and algorithms. Number 1139 (2002) · Zbl 0990.86007 · doi:10.1007/978-3-662-04808-5
[18] Lavancier, Determinantal point process models and statistical inference, J. Roy. Stat. Soc. B 77 pp 853– (2015) · doi:10.1111/rssb.12096
[19] Lavancier, A general procedure to combine estimators, Comput. Stat. Data Anal. 94 pp 175– (2016) · Zbl 06918660 · doi:10.1016/j.csda.2015.08.001
[20] Lieshout, Markov point processes and their applications (2000) · doi:10.1142/9781860949760
[21] Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Probab. 7 pp 83– (1975) · Zbl 0366.60081 · doi:10.2307/1425855
[22] Matérn, Lecture Notes in Statistics 36, in: Spatial variation (1986) · doi:10.1007/978-1-4615-7892-5
[23] McCullagh, The permanental process, Adv. Appl. Probab. 38 pp 873– (2006) · Zbl 1126.60040 · doi:10.1239/aap/1165414583
[24] Molchanov, Statistics of the Boolean model for practitioners and mathematicians (1997) · Zbl 0878.62068
[25] Møller, Shot noise Cox processes, Adv. Appl. Probab. 35 pp 614– (2003) · Zbl 1045.60007 · doi:10.1239/aap/1059486821
[26] Møller, Perfect simulation and moment properties for the Matérn type III process, Stoch. Proc. Appl. 120 pp 2142– (2010) · Zbl 1203.60051 · doi:10.1016/j.spa.2010.06.002
[27] Møller, An efficient MCMC method for distributions with intractable normalising constants, Biometrika 93 pp 451– (2006) · Zbl 1158.62020 · doi:10.1093/biomet/93.2.451
[28] Møller, Log Gaussian Cox processes, Scand. J. Stat. 25 pp 451– (1998) · Zbl 0931.60038 · doi:10.1111/1467-9469.00115
[29] Møller, Statistical inference and simulation for spatial point processes (2004) · Zbl 1044.62101
[30] Møller, Modern spatial point process modelling and inference (with discussion), Scand. J. Stat. 34 pp 643– (2007)
[31] Murray, Proceedings of the 22nd annual conference on uncertainty in artificial intelligence (UAI-06), 359-366. (2006)
[32] Pélissier, ads package for R: A fast unbiased implementation of the k-function family for studying spatial point patterns in irregular-shaped sampling windows, J. Stat. Softw. 63 pp 1– (2015) · doi:10.18637/jss.v063.i06
[33] R Core Team, R: A language and environment for statistical computing (2014)
[34] Rue, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion), J. Roy. Stat. Soc. B 71 pp 319– (2009) · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[35] Ruelle, Statistical mechanics: rigorous results (1969)
[36] Schlather, RandomFields: simulation and analysis of random fields (2015)
[37] Stoyan, Interrupted point processes, Biometrical. J. 21 pp 607– (1979) · Zbl 0419.60056 · doi:10.1002/bimj.4710210703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.