×

Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. (English) Zbl 1406.74503

Summary: The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the dynamics of ventricular contraction are extremely important in understanding the overall function of the heart. In this paper we generalize previous contributions on the active strain formulation and propose a new model for the excitation-contraction coupling process. We derive an evolution equation for the active fiber contraction based on configurational forces, which is thermodynamically consistent. Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall. A series of numerical tests highlights the importance of considering orthotropic mechanical activation in the heart and illustrates the main features of the proposed model.

MSC:

74L15 Biomechanical solid mechanics
92C10 Biomechanics
92C30 Physiology (general)
74F25 Chemical and reactive effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ambrosi, D.; Pezzuto, S., Active stress vs. active strain in mechanobiology: constitutive issues, J. Elast., 107, 2, 199-212, (2011) · Zbl 1312.74015
[2] Bogaert, J.; Rademakers, F. E., Regional nonuniformity of normal adult human left ventricle, Am. J. Physiol. Heart Circ. Physiol., 280, 2, H610-H620, (2001)
[3] Böl, M.; Abilez, O. J.; Assar, A. N.; Zarins, C. K.; Kuhl, E., In vitro/in silico characterization of active and passive stresses in cardiac muscle, Int. J. Multiscale Comp. Eng., 10, 171-188, (2012)
[4] Bourdarias, C.; Gerbi, S.; Ohayon, J., A pseudo active kinematic constraint for a biological living soft tissue: an effect of the collagen network, Math. Comput. Model, 49, 11-12, 2170-2181, (2009) · Zbl 1171.65440
[5] Bueno-Orovio, A.; Cherry, E. M.; Fenton, F. H., Minimal model for human ventricular action potentials in tissue, J. Theor. Biol., 253, 3, 554-560, (2008)
[6] Cesarman, E.; Brachfeld, N., Thermodynamics of the myocardial cell. A redefinition of its active and resting states, CHEST J., 72, 3, 269-271, (1977)
[7] Cherubini, C.; Filippi, S.; Nardinocchi, P.; Teresi, L., An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects, Prog. Biophys. Mol. Biol., 97, 2-3, 562-573, (2008)
[8] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, Arch. Rat. Mech., 47, 2, 597-613, (1967)
[9] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, J. Chem. Phys., 13, 167-178, (1963) · Zbl 0113.17802
[10] Colli Franzone, P.; Pavarino, L. F.; Scacchi, S.; Taccardi, B., Modeling ventricular repolarization: effects of transmural and apex-to-base heterogeneities in action potential durations, Math. Biosci., 214, 1-2, 140-152, (2008) · Zbl 1146.92010
[11] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electromechanics, Comp. Meth. Appl. Mech. Eng., 253, 323-336, (2013) · Zbl 1297.74077
[12] Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P., Modern geometry-methods and applications: the geometry of surfaces, transformation groups, and fields, (1992), Springer · Zbl 0751.53001
[13] Epstein, M., The elements of continuum biomechanics, (2012), John Wiley & Sons Chichester
[14] Eriksson, T. S.E.; Prassl, A. J.; Plank, G.; Holzapfel, G. A., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction, Math. Mech. Sol., 18, 6, 592-606, (2013)
[15] Göktepe, S.; Kuhl, E., Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 227-243, (2010) · Zbl 1183.78031
[16] Göktepe, S.; Acharya, S. N.S.; Wong, J.; Kuhl, E., Computational modeling of passive myocardium, Int. J. Num. Meth. Biomed. Eng, 27, 1-12, (2011) · Zbl 1207.92006
[17] Göktepe, S.; Menzel, A.; Kuhl, E., Micro-structurally based kinematic approaches to electromechanics of the heart, (Holzapfel, G. A.; Kuhl, E., Computer Models in Biomechanics: from Nano to Macro, (2013), Springer-Verlag), 175-187
[18] Gurtin, M. E.; Fried, E.; Anand, L., The mechanics and thermodynamics of continua, (2010), Cambridge University Press Cambridge
[19] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. R. Soc. Lond. A, 367, 3445-3475, (2009) · Zbl 1185.74060
[20] Hunter, P. J.; Nash, M. P.; Sands, G. B., Computational electromechanics of the heart, computational biology of the heart, 346-407, (1997), John Wiley and Sons London · Zbl 0905.92005
[21] Klingensmith, M. E.; Chen, L. E.; Glasgow, S. C., The Washington manual of surgery, (2008), Wolters Kluwer Health/Lippincott Williams & Wilkins Philadelphia
[22] Laadhari, A.; Ruiz-Baier, R.; Quarteroni, A., Fully Eulerian finite element approximation of a fluid-structure interaction problem in cardiac cells, Int. J. Num. Meth. Eng, 96, 712-738, (2013) · Zbl 1352.74388
[23] Lee, E. H.; Liu, D. T., Finite strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 17-27, (1967)
[24] LeGrice, I. J.; Takayama, Y.; Covell, J. W.J., Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening, Circ. Res., 77, 182-193, (1995)
[25] Lorenz, C. H.; Pastorek, J. S.; Bundy, J. M., Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging, J. Cardiovasc. Magn. Reson., 2, 2, 97-108, (2000)
[26] MacGowan, G. A.; Shapiro, E. P.; Azhari, H.; Siu, C. O.; Hees, P. S.; Hutchins, G. M.; Weiss, J. L.; Rademakers, F. E., Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy, Circulation, 96, 535-541, (1997)
[27] MaxIver, D. G., The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume, Exp. Clin. Cardiol., 17, 1, 5-11, (2012)
[28] Menzel, A.; Steinmann, P., On configurational forces in multiplicative elastoplasticity, Int. J. Sol. Struct., 44, 13, 4442-4471, (2007) · Zbl 1120.74015
[29] Murtada, S.; Kroon, M.; Holzapfel, G. A., A calcium-driven mechanochemical model for prediction of force generation in smooth muscle, Biomech. Model. Mechanobiol., 9, 749-762, (2010)
[30] Nagler, A.; Bertoglio, C.; Gee, M.; Wall, W., Personalization of cardiac fiber orientations from image data using the unscented Kalman filter, (Ourselin, S.; Rueckert, D.; Smith, N., Functional Imaging and Modeling of the Heart, Lecture Notes in Computer Science, vol. 7945, (2013), Springer-Verlag Berlin-Heidelberg), 132-140
[31] Nardinocchi, P.; Teresi, L., On the active response of soft living tissues, J. Elast., 88, 27-39, (2007) · Zbl 1115.74349
[32] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., 85, 501-522, (2004)
[33] Negroni, J. A.; Lascano, E. C., A simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model, J. Mol. Cell Cardiol., 45, 2, 300-312, (2008)
[34] Nobile, F.; Quarteroni, A.; Ruiz-Baier, R., An active strain electromechanical model for cardiac tissue, Int. J. Num. Meth. Biomed. Eng., 28, 52-71, (2012) · Zbl 1242.92016
[35] Ogden, R. W., Non-linear elastic deformations, (1984), Dover Publications Inc · Zbl 0541.73044
[36] Pathmanathan, P.; Chapman, S. J.; Gavaghan, D.; Whiteley, J. P., Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme, Quart. J. Mech. Appl. Math., 63, 375-399, (2010) · Zbl 1250.74019
[37] Pustoc’h, A.; Ohayon, J.; Usson, Y.; Kamgoue, A.; Tracqui, P., An integrative model of the self-sustained oscillating contractions of cardiac myocytes, Acta Biotheor., 53, 4, 277-293, (2005)
[38] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical mathematics, Series: Texts in Applied Mathematics, vol. 37, (2007), Springer-Verlag Milan · Zbl 0913.65002
[39] Quinn, T. A.; Kohl, P., Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies, Cardiovasc. Res., 97, 4, 601-611, (2013)
[40] Rademakers, F. E.; Rogers, W. J.; Guier, W. H.; Hutchins, G. M.; Siu, C. O.; Weisfeldt, M. L.; Weiss, J. L.; Shapiro, E. P., Relation of regional cross-fiber shortening to wall thickening in the intact heart. three-dimensional strain analysis by NMR tagging, Circulation, 89, 1174-1182, (1994)
[41] Reyhan, M.; Li, M.; Gupta, H.; Llyod, S. G.; Dell’Italia, L. J.; Kim, H. J.; Denney, T. S.; Ennis, D., Left ventricular twist and shear-angle in patients with mitral regurgitation, J. Cardiovasc. Magn. Reson., 15, P92, (2013)
[42] Rice, J. J.; Wang, F.; Bers, D. M.; de Tombe, P. P., Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations, Biophys. J., 95, 2368-2390, (2008)
[43] Rossi, S.; Ruiz-Baier, R.; Pavarino, L. F.; Quarteroni, A., Orthotropic active strain models for the numerical simulation of cardiac biomechanics, Int. J. Num. Meth. Biomed. Eng., 28, 761-788, (2012)
[44] Rousseau, O., Geometrical modeling of the heart, (2010), Université d’Ottawa, PhD thesis
[45] Ruiz-Baier, R.; Ambrosi, D.; Pezzuto, S.; Rossi, S.; Quarteroni, A., Activation models for the numerical simulation of cardiac electromechanical interactions, (Holzapfel, G. A.; Kuhl, E., Computer Models in Biomechanics: from Nano to Macro, (2013), Springer-Verlag), 189-201
[46] Ruiz-Baier, R.; Gizzi, A.; Rossi, S.; Cherubini, C.; Laadhari, A.; Filippi, S.; Quarteroni, A., Mathematical modeling of active contraction in isolated cardiomyocytes, Math. Med. Biol., (2013)
[47] Sharifimajd, B.; Stålhand, J., A continuum model for skeletal muscle contraction at homogeneous finite deformations, Biomech. Model. Mechanobiol., 12, 965-973, (2013)
[48] Stålhand, J.; Klarbring, A.; Holzapfel, G. A., Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains, Prog. Biophys. Mol. Biol., 96, 465-481, (2008)
[49] Stålhand, J.; Klarbring, A.; Holzapfel, G. A., A mechanochemical 3D continuum model for smooth muscle contraction under finite strains, J. Theor. Biol., 268, 120-130, (2011)
[50] Stålhand, J.; Klarbring, A.; Holzapfel, G. A., Modeling of smooth muscle activation, (Holzapfel, G. A.; Kuhl, E., Computer Models in Biomechanics: from Nano to Macro, (2013), Springer-Verlag), 77-92
[51] Strobeck, J. E.; Sonnenblick, E. H., Myocardial contractile properties and ventricular performance, (Fozzard, H. A.; Haber, E.; Jennings, R. B.; Katz, A. M.; Morgan, H. E., The Heart and Cardiovascular System, (1986), Raven New York), 31-49
[52] Taber, L. A.; Perucchio, R., Modeling heart development, J. Elast., 61, 1-3, 165-197, (2000) · Zbl 0987.74049
[53] Tracqui, P.; Ohayon, J.; Boudou, T., Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness, J. Theor. Biol., 255, 1, 92-105, (2008)
[54] Washio, T.; Okada, J.; Sugiura, S.; Hisada, T., Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model, Cell. Mol. Bioeng., 5, 113-126, (2012)
[55] Wong, J.; Kuhl, E., Generating fiber orientation maps in human heart models using Poisson interpolation, Comp. Meth. Biomech. Biomed. Eng., (2013)
[56] Xia, H.; Wong, K.; Zhao, X., A fully coupled model for electromechanics of the heart, Comput. Math. Methods Med., 2012, 927279, (2012) · Zbl 1256.92013
[57] Yaniv, Y.; Sivan, R.; Landesberg, A., Stability controllability and observability of the four state model: model of the sarcomere control of contraction, Ann. Biomed. Eng., 34, 778-789, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.