×

On the Hamiltonian formalism of the tetrad-connection gravity. (English) Zbl 1370.83081

Summary: We present a detailed analysis of the Hamiltonian constraints of the \(d\)-dimensional tetrad-connection gravity where the non-dynamic part of the spatial connection is fixed to zero by an adequate gauge transformation. This new action leads to a coherent Hamiltonian formalism where the Lorentz, scalar and vectorial first-class constraints obey a closed algebra in terms of Poisson brackets. This algebra closes with structure constants instead of structure functions resulting from the Hamiltonian formalisms based on the A.D.M. decomposition. The same algebra of the reduced first-class constraints, where the second-class constraints are eliminated as strong equalities, is obtained in terms of Dirac brackets. These first-class constraints lead to the same physical degrees of freedom of the general relativity.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ashtekar A and Lewandowski J 2004 Class. Quantum Grav.21 R53 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[2] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press) · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[3] Thiemann T 2007 Modern Canonical Quantum General Gravity (Cambridge: Cambridge University Press) · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[4] Arnowitt R, Deser S and Misner C W 1962 Gravitation: An Introduction In Current research ed L Witten (New york: Wiley) · Zbl 0115.43103
[5] Wald R 1989 General Relativity (Chicago: The University of Chicago Press)
[6] Hawking S and Ellis G F R 1989 The Large Scale Structure of Spactime (Cambridge: Cambridge University Press)
[7] Holst S 1996 Phys. Rev. D 53 5966 · doi:10.1103/PhysRevD.53.5966
[8] Barbero J F 1995 Phys. Rev. D 51 5507 · doi:10.1103/PhysRevD.51.5507
[9] Immirzi G 1997 Class. Quantum Grav.14 L177-81 · Zbl 0887.53059 · doi:10.1088/0264-9381/14/10/002
[10] Rovelli C and Smolin L 1995 Nucl. Phys. B 442 593 · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[11] Ashtekar A and Lewandowski J 1997 Class. Quantum Grav.14 A55-81 · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[12] Loll R 1995 Phys. Rev. Lett.75 3048 · Zbl 1020.83541 · doi:10.1103/PhysRevLett.75.3048
[13] Rovelli C 1996 Phys. Rev. Lett.14 3288 · Zbl 0955.83506 · doi:10.1103/PhysRevLett.77.3288
[14] Ashtekar A, Baez J, Corichi A and Krasnov K 1998 Phys. Rev. Lett.80 904 · Zbl 0949.83024 · doi:10.1103/PhysRevLett.80.904
[15] Perez A and Rovelli C 2005 Phys. Rev. D 73 044013 · doi:10.1103/PhysRevD.73.044013
[16] Freidel L, Minic D and Takeuchi T 2005 Phys. Rev. D 72 104002 · doi:10.1103/PhysRevD.72.104002
[17] Bojoward M and Das R 2008 Class. Quantum Grav.25 195006 · Zbl 1151.83038 · doi:10.1088/0264-9381/25/19/195006
[18] Deser S and Isham C J 1976 Phys. Rev. D 14 2505 · doi:10.1103/PhysRevD.14.2505
[19] Baez J 1998 Class. Quantum Grav.15 1827 · Zbl 0932.83014 · doi:10.1088/0264-9381/15/7/004
[20] Baez J 2000 Lect. Notes Phys.543 25 · doi:10.1007/3-540-46552-9_2
[21] Barrett J W and Crane L 1998 J. Math. Phys.39 3296 · Zbl 0967.83006 · doi:10.1063/1.532254
[22] Alexandrov S 2000 Class. Quantum Grav.17 4255 · Zbl 0976.83044 · doi:10.1088/0264-9381/17/20/307
[23] Alexandrov S and Vassilevich D 2001 Phys. Rev. D 64 044023 · doi:10.1103/PhysRevD.64.044023
[24] Alexandrov S and Levine E 2003 Phys. Rev. D 67 044009 · doi:10.1103/PhysRevD.67.044009
[25] Barros e Sa N 2001 Int. J. Mod. Phys. D 10 261 · Zbl 1155.83312 · doi:10.1142/S0218271801000858
[26] Celada M, Montesinos M and Romero J 2016 Class. Quantum Grav.33 115014 · Zbl 1470.83009 · doi:10.1088/0264-9381/33/11/115014
[27] Bodendorfer N, Thiemann T and Thurn A 2013 Class. Quantum Grav.30 045002 · Zbl 1266.83073 · doi:10.1088/0264-9381/30/4/045002
[28] Dirac P A M 1964 Lectures On Quantum Mechanics (New York: Yeshiva University)
[29] Bañados M and Contreras M 1998 Class. Quantum Grav.15 1527 · Zbl 0941.83002 · doi:10.1088/0264-9381/15/6/009
[30] Peldan P 1994 Class. Quantum Grav.11 1087 · doi:10.1088/0264-9381/11/5/003
[31] Hojman S A, Kuchar K and Teitelboim C 1976 Ann. Phys.96 88 · Zbl 0318.53033 · doi:10.1016/0003-4916(76)90112-3
[32] Bergmann P G and Komar D 1972 Int. J. Theor. Phys.5 15 · doi:10.1007/BF00671650
[33] Frolov A M, Kiriushcheva N and Kuzmin S V 2010 Grav. Cosmol.16 181 · Zbl 1232.83012 · doi:10.1134/S0202289310030011
[34] Witten E 1988 Nucl. Phys. B 311 46 · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[35] Kiriushcheva N and Kuzmin S V 2010 Int. J. Theor. Phys.49 2859 · Zbl 1205.83057 · doi:10.1007/s10773-010-0479-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.