×

Flow in a commercial steel pipe. (English) Zbl 1159.76304

Summary: Mean flow measurements are obtained in a commercial steel pipe with \(k_{rms}/D\) = 1/26 000, where \(k_{rms}\) is the roughness height and D the pipe diameter, covering the smooth, transitionally rough, and fully rough regimes. The results indicate a transition from smooth to rough flow that is much more abrupt than the Colebrook transitional roughness function suggests. The equivalent sandgrain roughness was found to be 1.6 times the r.m.s. roughness height, in sharp contrast to the value of 3.0 to 5.0 that is commonly used. The difference amounts to a reduction in pressure drop for a given flow rate of at least 13% in the fully rough regime. The mean velocity profiles support Townsend’s similarity hypothesis for flow over rough surfaces.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76F06 Transition to turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112003007304 · Zbl 1067.76513 · doi:10.1017/S0022112003007304
[2] DOI: 10.1017/S0022112005005501 · Zbl 1108.76315 · doi:10.1017/S0022112005005501
[3] DOI: 10.1088/0957-0233/13/10/314 · doi:10.1088/0957-0233/13/10/314
[4] Langelandsvik, Proc. 2005 PSIG Conference (2005)
[5] DOI: 10.1063/1.2735000 · Zbl 1146.76452 · doi:10.1063/1.2735000
[6] Galavics, Schweizer Archiv 5 pp 337– (1939)
[7] DOI: 10.1017/S0022112005007780 · doi:10.1017/S0022112005007780
[8] DOI: 10.1063/1.1843135 · Zbl 1187.76157 · doi:10.1063/1.1843135
[9] Ito, Trans. ASME: J. Basic Engng 6 pp 123– (1959)
[10] Colebrook, Proc. R. Lond. Soc. 161 pp 367– (1937)
[11] Hama, Trans SNAME 62 pp 333– (1954)
[12] Colebrook, J. Inst. Civil Engrs 11 pp 133– (1939) · doi:10.1680/ijoti.1939.13150
[13] DOI: 10.1103/PhysRevLett.96.044502 · doi:10.1103/PhysRevLett.96.044502
[14] DOI: 10.1016/0376-0421(75)90014-7 · doi:10.1016/0376-0421(75)90014-7
[15] Gersten, Oil & Gas J. 98 pp 58– (2000)
[16] Bauer, Archiv Waermewirtschaft 17 pp 125– (1936)
[17] DOI: 10.1063/1.870410 · Zbl 1149.76323 · doi:10.1063/1.870410
[18] Blasius, Forschg. Arb. Ing. 135 pp none– (1913)
[19] DOI: 10.1063/1.2145753 · Zbl 1188.76005 · doi:10.1063/1.2145753
[20] DOI: 10.1017/S0022112098002419 · Zbl 0941.76510 · doi:10.1017/S0022112098002419
[21] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[22] Sletfjerding, Proceedings of the 1998 PSIG Conference (1998)
[23] DOI: 10.1017/S0022112006001467 · Zbl 1178.76049 · doi:10.1017/S0022112006001467
[24] DOI: 10.1017/S0022112001004840 · doi:10.1017/S0022112001004840
[25] Nikuradse, VDI Forschungsheft 361 pp none– (1933)
[26] Moody, Trans. ASME 66 pp 671– (1944)
[27] DOI: 10.1088/0957-0233/14/8/334 · doi:10.1088/0957-0233/14/8/334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.