×

zbMATH — the first resource for mathematics

On special elements and pseudocomplementation in lattices with antitone involutions. (English) Zbl 1398.06007
Summary: The so-called basic algebras correspond in a natural way to lattices with antitone involutions and hence generalize both MV-algebras and orthomodular lattices. The paper deals with several types of special elements of basic algebras and with pseudocomplemented basic algebras.
MSC:
06D15 Pseudocomplemented lattices
06D35 MV-algebras
06C15 Complemented lattices, orthocomplemented lattices and posets
03G25 Other algebras related to logic
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balbes R, Dwinger P (1975) Distributive lattices. University of Missouri Press, Columbia · Zbl 0321.06012
[2] Botur, M; Halaš, R, Finite commutative basic algebras are MV-effect algebras, J Mult Valued Log Soft Comput, 14, 69-80, (2008) · Zbl 1236.06007
[3] Botur, M; Kühr, J, On (finite) distributive lattices with antitone involutions, Soft Comput, 18, 1033-1040, (2014) · Zbl 1330.06004
[4] Botur, M; Kühr, J; Rachůnek, J, On states and state operators on certain basic algebras, Int J Theor Phys, 53, 3512-3530, (2014) · Zbl 1302.81050
[5] Chajda, I; Emanovský, P, Bounded lattices with antitone involutions and properties of MV-algebras, Discuss Math Gen Algebra Appl, 24, 31-42, (2004) · Zbl 1082.03055
[6] Chajda I, Halaš R, Kühr J (2009a) Many-valued quantum algebras. Algebra Univ 60:63-90 · Zbl 1219.06013
[7] Chajda I, Halaš R, Kühr J (2009b) Every effect algebra can be made into a total algebra. Algebra Univ 61:139-150 · Zbl 1192.03048
[8] Chajda, I; Kolařík, M, Direct decompositions of basic algebras and their idempotent modifications, Acta Univ M Belii Ser Math, 25, 11-19, (2009) · Zbl 1203.03090
[9] Chajda, I; Kühr, J, Finitely generated varieties of distributive effect algebras, Algebra Univ, 69, 213-229, (2013) · Zbl 1296.03037
[10] Chajda, I; Kühr, J, Ideals and congruences of basic algebras, Soft Comput, 17, 401-410, (2013) · Zbl 1271.03087
[11] Cignoli RLO, D’Ottaviano IML, Mundici D (2000) Algebraic foundations of many-valued reasoning. Kluwer, Dordrecht · Zbl 0937.06009
[12] Dvurečenskij A, Pulmannová S (2000) New trends in quantum structures. Kluwer and Ister Science, Dordrecht and Bratislava · Zbl 0987.81005
[13] Foulis, D; Bennett, MK, Effect algebras and unsharp quantum logics, Found Phys, 24, 1331-1352, (1994) · Zbl 1213.06004
[14] Grätzer G (2011) Lattice theory: Foundation. Birkhäuser, Basel · Zbl 1233.06001
[15] Jenča, G; Riečanová, Z, On sharp elements in lattice-ordered effect algebras, BUSEFAL, 80, 24-29, (1999)
[16] Kalman, JA, Lattices with involution, Trans Am Math Soc, 87, 485-491, (1958) · Zbl 0228.06003
[17] Kalmbach G (1983) Orthomodular lattices. Academic Press, London · Zbl 0512.06011
[18] Kôpka, F; Chovanec, F, D-posets, Math Slov, 44, 21-34, (1994) · Zbl 0789.03048
[19] Krňávek, J; Kühr, J, Pre-ideals of basic algebras, Int J Theor Phys, 50, 3828-3843, (2011) · Zbl 1247.81018
[20] Krňávek, J; Kühr, J, A note on derivations on basic algebras, Soft Comput, 19, 1765-1771, (2015) · Zbl 1373.06011
[21] Krňávek, J; Kühr, J, On non-associative generalizations of MV-algebras and lattice-ordered commutative loops, Fuzzy Sets Syst, 289, 122-136, (2016) · Zbl 1374.06024
[22] Kühr, J; Chajda, I; Halaš, R, The join of the variety of MV-algebras and the variety of orthomodular lattices, Int J Theor Phys, 54, 4423-4429, (2015) · Zbl 1329.81099
[23] Riečanová, Z, Compatibility and central elements in effect algebras, Tatra Mt Math Publ, 10, 119-128, (1997) · Zbl 0915.06001
[24] Riečanová, Z, Subalgebras, intervals and central elements of generalised effect algebras, Int J Theor Phys, 38, 3209-3220, (1999) · Zbl 0963.03087
[25] Riečanová, Z, Pseudocomplemented lattice effect algebras and existence of states, Inf Sci, 179, 529-534, (2009) · Zbl 1166.03038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.