Kubo, Hideo; Kubota, Kôji Asymptotic behavior of classical solutions to a system of semilinear wave equations in low space dimensions. (English) Zbl 1016.35050 J. Math. Soc. Japan 53, No. 4, 875-912 (2001). The authors give a new a priori estimate for a classical solution of the nonhomogeneous wave equation in \(\mathbb{R}^n\times \mathbb{R},\) where \(n=2,3.\) Under some conditions on \(p, q,\) they construct a global solution of the system \(u_{tt}-\triangle u=|v|^p\), \(v_{tt}-\triangle v=|u|^q,\) which is asymptotic to a pair of solutions to a homogeneous wave equation with small initial data. Reviewer: Marie Kopáčková (Praha) Cited in 7 Documents MSC: 35L70 Second-order nonlinear hyperbolic equations 35B45 A priori estimates in context of PDEs 35B40 Asymptotic behavior of solutions to PDEs 35B33 Critical exponents in context of PDEs Keywords:semilinear wave equation; asymptotic behavior; Cauchy problem; coupled system of equations; critical estimates PDF BibTeX XML Cite \textit{H. Kubo} and \textit{K. Kubota}, J. Math. Soc. Japan 53, No. 4, 875--912 (2001; Zbl 1016.35050) Full Text: DOI