zbMATH — the first resource for mathematics

Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models. (English) Zbl 1422.91565
Summary: In this paper, we show how to approximate Heath-Jarrow-Morton dynamics for the forward prices in commodity markets with arbitrage-free models which have a finite-dimensional state space. Moreover, we recover a closed-form representation of the forward price dynamics in the approximation models and derive the rate of convergence to the true dynamics uniformly over an interval of time to maturity under certain additional smoothness conditions. In the Markovian case, we can strengthen the convergence to be uniform over time as well. Our results are based on the construction of a convenient Riesz basis on the state space of the term structure dynamics.
91B74 Economic models of real-world systems (e.g., electricity markets, etc.)
91B25 Asset pricing models (MSC2010)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI
[1] Albeverio, S.; Ferrario, B.; Prato, G. (ed.); Röckner, M. (ed.), Some methods of infinite dimensional analysis in hydrodynamics: an introduction, No. 1942, 1-50, (2005), Berlin
[2] Barth, A., A finite element method for martingale-driven stochastic partial differential equations, Commun. Stoch. Anal., 4, 355-373, (2010) · Zbl 1331.65016
[3] Benth, F.E.; Kallsen, J.; Meyer-Brandis, T., A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing, Appl. Math. Finance, 14, 153-169, (2007) · Zbl 1160.91337
[4] Benth, F.E.; Krühner, P., Representation of infinite-dimensional forward price models in commodity markets, Commun. Math. Stat., 2, 47-106, (2014) · Zbl 1322.60100
[5] Benth, F.E.; Krühner, P., Subordination of Hilbert space valued Lévy processes, Stochastics, 87, 458-476, (2015) · Zbl 1327.60103
[6] Benth, F.E.; Krühner, P., Derivatives pricing in energy markets: an infinite-dimensional approach, SIAM J. Financ. Math., 6, 825-869, (2015) · Zbl 1347.60082
[7] Benth, F.E.; Lempa, J., Optimal portfolios in commodity markets, Finance Stoch., 18, 407-430, (2014) · Zbl 1305.91213
[8] Benth, F.E., Šaltytė Benth, J.: Modeling and Pricing in Financial Markets for Weather Derivatives. World Scientific, Singapore (2013) · Zbl 1303.91004
[9] Benth, F.E., Šaltytė Benth, J., Koekebakker, S.: Stochastic Modelling of Electricity and Related Markets. World Scientific, Singapore (2008) · Zbl 1143.91002
[10] Björk, T., On the existence of finite-dimensional realizations for nonlinear forward rate models, Math. Finance, 11, 205-243, (2001) · Zbl 1055.91017
[11] Björk, T.; Landén, C., On the construction of finite dimensional realizations for nonlinear forward rate models, Finance Stoch., 6, 303-331, (2002) · Zbl 1026.60084
[12] Björk, T.; Svensson, L., On the existence of finite-dimensional realizations for nonlinear forward rate models, Math. Finance, 11, 205-243, (2001) · Zbl 1055.91017
[13] Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006) · Zbl 1124.91030
[14] Clewlow, L., Strickland, C.: Energy Derivatives: Pricing and Risk Management. Lacima Publications, London (2000)
[15] Cuchiero, C.; Klein, I.; Teichmann, J., A new perspective on the fundamental theorem of asset pricing for large financial markets, Theory Probab. Appl., 60, 561-579, (2016) · Zbl 1352.91035
[16] Delbaen, F.; Schachermayer, W., The fundamental theorem of asset pricing for unbounded stochastic processes, Math. Ann., 312, 215-250, (1998) · Zbl 0917.60048
[17] Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces. Wiley, New York (2000) · Zbl 0974.28006
[18] Duffie, D.; Filipović, D.; Schachermayer, W., Affine processes and applications to finance, Ann. Appl. Probab., 13, 984-1053, (2003) · Zbl 1048.60059
[19] Filipović, D., Invariant manifolds for weak solutions to stochastic equations, Probab. Theory Relat. Fields, 118, 323-341, (2000) · Zbl 0970.60069
[20] Filipović, D.: Consistency Problems for Heath-Jarrow-Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001) · Zbl 1008.91038
[21] Filipović, D.; Tappe, S.; Teichmann, J., Jump-diffusions in Hilbert spaces: existence, stability and numerics, Stochastics, 82, 475-520, (2010) · Zbl 1230.60066
[22] Filipović, D.; Teichmann, J., Existence of invariant manifolds for stochastic equations in infinite dimension, J. Funct. Anal., 197, 398-432, (2003) · Zbl 1013.60035
[23] Grecksch, W.; Kloeden, P.E., Time-discretised Galerkin approximations of parabolic stochastic pdes, Bull. Aust. Math. Soc., 54, 79-85, (1996) · Zbl 0880.35143
[24] Heath, D.; Jarrow, R.; Morton, A., Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation, Econometrica, 60, 77-105, (1992) · Zbl 0751.90009
[25] Henseler, M., Christoph, C., Seydel, R.C.: A tractable multi-factor dynamic term-structure model for risk management. Working paper (2015), available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2225738 · Zbl 1211.60027
[26] Kruse, R., Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34, 217-251, (2011) · Zbl 1282.65021
[27] Kruse, R.: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093. Springer, Berlin (2014) · Zbl 1285.60002
[28] Mishura, Y.; Munchak, E., Rate of convergence of option prices by using the method of pseudomoments, Theory Probab. Math. Stat., 92, 117-133, (2016) · Zbl 1345.60018
[29] Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge (2007) · Zbl 1205.60122
[30] Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Berlin (2010) · Zbl 1225.60004
[31] Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007) · Zbl 1123.60001
[32] Szőkefalvi-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam (1970) · Zbl 0201.45003
[33] Tappe, S., An alternative approach on the existence of affine realizations for HJM term structure models, Proc. R. Soc. Lond. Ser. A, 466, 3033-3060, (2010) · Zbl 1211.60027
[34] Tappe, S., Some refinements of existence results for SPDEs driven by Wiener processes and Poisson random measures, Int. J. Stoch. Anal., 2012, (2012) · Zbl 1263.60060
[35] Young, R.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980) · Zbl 0493.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.