×

Light-state dominance from the conformal bootstrap. (English) Zbl 1421.81119

Summary: We derive forms of light-state dominance for correlators in \(\mathrm{CFT}_{d}\), making precise the sense in which correlators can be approximated by the contribution of light operator exchanges. Our main result is that the four-point function of operators with dimension \({\Delta}\) is approximated, with bounded error, by the contribution of operators with scaling dimension below \({\Delta}_c > 2{\Delta}\) in the appropriate OPE channel. Adapting an existing modular invariance argument, we use crossing symmetry to show that the heavy-state contribution is suppressed by a relative factor of \({e}^{2\Delta -{\Delta}_c}\). We extend this result to the first sheet and derivatives of the correlator. Further exploiting technical similarities between crossing and modular invariance, we prove analogous results for the \(2d\) partition function along the way. We then turn to effective field theory in gapped theories and AdS/CFT, and make some general comments about the effect of integrating out heavy particles in the bulk. Combining our bounds with the Lorentzian OPE inversion formula we show that, under certain conditions, light-state dominance implies that integrating out heavy exchanges leads to higher-derivative couplings suppressed at large \({\Delta}_{\mathrm{gap}}\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
62P35 Applications of statistics to physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE]. · Zbl 0689.17016
[2] Kraus, P.; Maloney, A., A Cardy formula for three-point coefficients or how the black hole got its spots, JHEP, 05, 160 (2017) · Zbl 1380.81336 · doi:10.1007/JHEP05(2017)160
[3] Chang, C-M; Lin, Y-H, Bootstrap, universality and horizons, JHEP, 10, 068 (2016) · Zbl 1390.83094 · doi:10.1007/JHEP10(2016)068
[4] Cardy, J.; Maloney, A.; Maxfield, H., A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance, JHEP, 10, 136 (2017) · Zbl 1383.81190 · doi:10.1007/JHEP10(2017)136
[5] Keller, CA; Mathys, G.; Zadeh, IG, Bootstrapping chiral CFTs at genus two, Adv. Theor. Math. Phys., 22, 1447 (2018) · Zbl 07430952 · doi:10.4310/ATMP.2018.v22.n6.a3
[6] Cho, M.; Collier, S.; Yin, X., Genus two modular bootstrap, JHEP, 04, 022 (2019) · Zbl 1415.81076 · doi:10.1007/JHEP04(2019)022
[7] D. Das, S. Datta and S. Pal, Universal asymptotics of three-point coefficients from elliptic representation of Virasoro blocks, Phys. Rev.D 98 (2018) 101901 [arXiv:1712.01842] [INSPIRE].
[8] Romero-Bermúdez, A.; Sabella-Garnier, P.; Schalm, K., A Cardy formula for off-diagonal three-point coefficients; or, how the geometry behind the horizon gets disentangled, JHEP, 09, 005 (2018) · Zbl 1398.81222 · doi:10.1007/JHEP09(2018)005
[9] Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular invariance of two-dimensional conformal field theories, Phys. Rev.D 98 (2018) 026003 [arXiv:1804.09658] [INSPIRE].
[10] E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev.D 98 (2018) 126015 [arXiv:1804.07924] [INSPIRE].
[11] Y. Kusuki, New properties of large-c conformal blocks from recursion relation, JHEP07 (2018) 010 [arXiv:1804.06171] [INSPIRE]. · Zbl 1395.81231
[12] Kusuki, Y., Large-c Virasoro blocks from monodromy method beyond known limits, JHEP, 08, 161 (2018) · Zbl 1396.81179 · doi:10.1007/JHEP08(2018)161
[13] E. Shaghoulian, Modular forms and a generalized Cardy formula in higher dimensions, Phys. Rev.D 93 (2016) 126005 [arXiv:1508.02728] [INSPIRE].
[14] E. Shaghoulian, Modular invariance of conformal field theory on S^1 × S^3and circle fibrations, Phys. Rev. Lett.119 (2017) 131601 [arXiv:1612.05257] [INSPIRE].
[15] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev.D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].
[16] Rychkov, Slava; Yvernay, Pierre, Remarks on the convergence properties of the conformal block expansion, Physics Letters B, 753, 682-686 (2016) · Zbl 1367.81127 · doi:10.1016/j.physletb.2016.01.004
[17] B. Mukhametzhanov and A. Zhiboedov, Analytic Euclidean bootstrap, arXiv:1808.03212 [INSPIRE]. · Zbl 1391.81166
[18] Kim, H.; Kravchuk, P.; Ooguri, H., Reflections on conformal spectra, JHEP, 04, 184 (2016)
[19] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, N = 4 superconformal bootstrap of the K3 CFT, JHEP05 (2017) 126 [arXiv:1511.04065] [INSPIRE]. · Zbl 1380.81339
[20] Fitzpatrick, AL; Kaplan, J.; Poland, D.; Simmons-Duffin, D., The analytic bootstrap and AdS superhorizon locality, JHEP, 12, 004 (2013) · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[21] Komargodski, Z.; Zhiboedov, A., Convexity and liberation at large spin, JHEP, 11, 140 (2013) · doi:10.1007/JHEP11(2013)140
[22] D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184
[23] Alday, LF, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett., 119, 111601 (2017) · doi:10.1103/PhysRevLett.119.111601
[24] Caron-Huot, S., Analyticity in spin in conformal theories, JHEP, 09, 078 (2017) · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[25] P. Kraus, A. Sivaramakrishnan and R. Snively, Black holes from CFT: universality of correlators at large c, JHEP08 (2017) 084 [arXiv:1706.00771] [INSPIRE]. · Zbl 1381.83070
[26] Anous, T.; Mahajan, R.; Shaghoulian, E., Parity and the modular bootstrap, SciPost Phys., 5, 022 (2018) · doi:10.21468/SciPostPhys.5.3.022
[27] T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE]. · Zbl 1333.81368
[28] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[29] Hartman, T.; Jain, S.; Kundu, S., Causality constraints in conformal field theory, JHEP, 05, 099 (2016) · doi:10.1007/JHEP05(2016)099
[30] M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev.D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE]. · Zbl 1342.81497
[31] E. Dyer and G. Gur-Ari, 2D CFT partition functions at late times, JHEP08 (2017) 075 [arXiv:1611.04592] [INSPIRE]. · Zbl 1381.83061
[32] Hellerman, S., A universal inequality for CFT and quantum gravity, JHEP, 08, 130 (2011) · Zbl 1298.83051 · doi:10.1007/JHEP08(2011)130
[33] D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE]. · Zbl 1342.81361
[34] Gliozzi, F., More constraining conformal bootstrap, Phys. Rev. Lett., 111, 161602 (2013) · doi:10.1103/PhysRevLett.111.161602
[35] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from conformal bootstrap, JHEP10 (2014) 042 [arXiv:1403.6003] [INSPIRE].
[36] Gliozzi, F.; Liendo, P.; Meineri, M.; Rago, A., Boundary and interface CFTs from the conformal bootstrap, JHEP, 05, 036 (2015) · Zbl 1388.81150 · doi:10.1007/JHEP05(2015)036
[37] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP, 01, 146 (2016) · Zbl 1388.81047 · doi:10.1007/JHEP01(2016)146
[38] Fitzpatrick, AL; Katz, E.; Poland, D.; Simmons-Duffin, D., Effective conformal theory and the flat-space limit of AdS, JHEP, 07, 023 (2011) · Zbl 1298.81212 · doi:10.1007/JHEP07(2011)023
[39] L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP07 (2018) 131 [arXiv:1712.02314] [INSPIRE]. · Zbl 1395.81197
[40] Alday, LF; Caron-Huot, S., Gravitational S-matrix from CFT dispersion relations, JHEP, 12, 017 (2018) · Zbl 1405.81114 · doi:10.1007/JHEP12(2018)017
[41] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops and 6j symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE]. · Zbl 1414.81211
[42] Kraus, P.; Sivaramakrishnan, A.; Snively, R., Late time Wilson lines, JHEP, 04, 026 (2019) · Zbl 1415.81086 · doi:10.1007/JHEP04(2019)026
[43] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT_d/AdS_d+1correspondence, Nucl. Phys.B 546 (1999) 96 [hep-th/9804058] [INSPIRE]. · Zbl 0944.81041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.