×

Relativistic stars in beyond Horndeski theories. (English) Zbl 1354.85005

Summary: This work studies relativistic stars in beyond Horndeski scalar-tensor theories that exhibit a breaking of the Vainshtein mechanism inside matter, focusing on a model based on the quartic beyond Horndeski Lagrangian. We self-consistently derive the scalar field profile for static spherically symmetric objects in asymptotically de Sitter space-time and show that the Vainshtein breaking branch of the solutions is the physical branch thereby resolving several ambiguities with non-relativistic frameworks. The geometry outside the star is shown to be exactly Schwarzschild-de Sitter and therefore the parameterised post-Newtonian parameter \(\beta_{\mathrm{PPN}}=1\), confirming that the external screening works at the post-Newtonian level. The Tolman-Oppenheimer-Volkoff (TOV) equations are derived and a new lower bound on the Vainshtein breaking parameter \(\Upsilon_{1}> -4/9\) is found by requiring the existence of static spherically symmetric stars. Focusing on the unconstrained case where \(\Upsilon_{1}< 0\), we numerically solve the TOV equations for polytropic and realistic equations of state and find stars with larger radii at fixed mass. Furthermore, the maximum mass can increase dramatically and stars with masses in excess of \(3M_{\odot}\) can be found for relatively small values of the Vainshtein breaking parameter. We re-examine white dwarf stars and show that post-Newtonian corrections are important in beyond Horndeski theories and therefore the bounds coming from previous analyses should be revisited.

MSC:

85A15 Galactic and stellar structure
83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C15 Exact solutions to problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Modified gravity and cosmology Phys. Rep.513 1-89 · doi:10.1016/j.physrep.2012.01.001
[2] Joyce A, Jain B, Khoury J and Trodden M 2015 Beyond the cosmological standard model Phys. Rep.568 1-98 · doi:10.1016/j.physrep.2014.12.002
[3] Koyama K 2016 Cosmological tests of modified gravity Rep. Prog. Phys.79 046902 · doi:10.1088/0034-4885/79/4/046902
[4] Bull P et al 2016 Beyond ŁambdaCDM: problems, solutions, and the road ahead Phys. Dark Univ.12 56-99 · doi:10.1016/j.dark.2016.02.001
[5] Horndeski G W 1974 Second-order scalar-tensor field equations in a four-dimensional space Int. J. Theor. Phys.10 363-84 · doi:10.1007/BF01807638
[6] Deffayet C, Gao X, Steer D A and Zahariade G 2011 From k-essence to generalised Galileons Phys. Rev. D 84 064039 · doi:10.1103/PhysRevD.84.064039
[7] Zumalacrregui M and Garca-Bellido J 2014 Transforming gravity: from derivative couplings to matter to second-order scalar – tensor theories beyond the Horndeski Lagrangian Phys. Rev.D89 064046 · doi:10.1103/PhysRevD.89.064046
[8] Gleyzes J, Langlois D, Piazza F and Vernizzi F 2015 Healthy theories beyond Horndeski Phys. Rev. Lett.114 211101 · doi:10.1103/PhysRevLett.114.211101
[9] Gleyzes J, Langlois D, Piazza F and Vernizzi F 2015 Exploring gravitational theories beyond Horndeski J. Cosmol. Astropart. Phys. JCAP02(2015)018 · doi:10.1088/1475-7516/2015/02/018
[10] Langlois D and Noui K 2016 Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability J. Cosmol. Astropart. Phys. JCAP02(2016)034 · doi:10.1088/1475-7516/2016/02/034
[11] Langlois D and Noui K 2016 Hamiltonian analysis of higher derivative scalar – tensor theories J. Cosmol. Astropart. Phys. JCAP07(2016)016 · doi:10.1088/1475-7516/2016/02/034
[12] Motohashi H, Noui K, Suyama T, Yamaguchi M and Langlois D 2016 Healthy degenerate theories with higher derivatives J. Cosmol. Astropart. Phys. JCAP07(2016)033 · doi:10.1088/1475-7516/2016/07/033
[13] Klein R and Roest D 2016 Exorcising the Ostrogradsky ghost in coupled systems J. High Energy Phys. JHEP07(2016)130 · Zbl 1390.83461 · doi:10.1007/JHEP07(2016)130
[14] Crisostomi M, Hull M, Koyama K and Tasinato G 2016 Horndeski: beyond, or not beyond? J. Cosmol. Astropart. Phys. JCAP03(2016)038 · doi:10.1088/1475-7516/2016/03/038
[15] Crisostomi M, Koyama K and Tasinato G 2016 Extended scalar-tensor theories of gravity J. Cosmol. Astropart. Phys. JCAP04(2016)044 · doi:10.1088/1475-7516/2016/04/044
[16] de Rham C and Matas A 2016 Ostrogradsky in theories with multiple fields J. Cosmol. Astropart. Phys. JCAP06(2016)041 · doi:10.1088/1475-7516/2016/06/041
[17] Ben Achour J, Langlois D and Noui K 2016 Degenerate higher order scalar – tensor theories beyond Horndeski and disformal transformations Phys. Rev. D 93 124005 · Zbl 1390.83249 · doi:10.1103/PhysRevD.93.124005
[18] Vainshtein A I 1972 To the problem of nonvanishing gravitation mass Phys. Lett. B 39 393-4 · doi:10.1016/0370-2693(72)90147-5
[19] Babichev E and Deffayet C 2013 An introduction to the Vainshtein mechanism Class. Quant. Grav.30 184001 · Zbl 1277.83002 · doi:10.1088/0264-9381/30/18/184001
[20] Khoury J Les Houches lectures on physics beyond the standard model of cosmology 1312.2006
[21] Koyama K, Niz G and Tasinato G 2013 Effective theory for the Vainshtein mechanism from the Horndeski action Phys. Rev. D 88 021502 · doi:10.1103/PhysRevD.88.021502
[22] Kimura R, Kobayashi T and Yamamoto K 2012 Vainshtein screening in a cosmological background in the most general second-order scalar – tensor theory Phys. Rev. D 85 024023 · doi:10.1103/PhysRevD.85.024023
[23] Narikawa T, Kobayashi T, Yamauchi D and Saito R 2013 Testing general scalar – tensor gravity and massive gravity with cluster lensing Phys. Rev. D 87 124006 · doi:10.1103/PhysRevD.87.124006
[24] Kobayashi T, Watanabe Y and Yamauchi D 2015 Breaking of Vainshtein screening in scalar – tensor theories beyond Horndeski Phys. Rev. D 91 064013 · doi:10.1103/PhysRevD.91.064013
[25] Koyama K and Sakstein J 2015 Astrophysical probes of the Vainshtein mechanism: stars and galaxies Phys. Rev. D 91 124066 · doi:10.1103/PhysRevD.91.124066
[26] Saito R, Yamauchi D, Mizuno S, Gleyzes J and Langlois D 2015 Modified gravity inside astrophysical bodies J. Cosmol. Astropart. Phys. JCAP06(2015)008 · doi:10.1088/1475-7516/2015/06/008
[27] Sakstein J, Wilcox H, Bacon D, Koyama K and Nichol R C 2016 Testing gravity using galaxy Clusters: new constraints on beyond Horndeski theories J. Cosmol. Astropart. Phys. JCAP07(2016)019 · doi:10.1088/1475-7516/2016/07/019
[28] Sakstein J 2015 Hydrogen burning in low mass stars constrains scalar – tensor theories of gravity Phys. Rev. Lett.115 201101 · doi:10.1103/PhysRevLett.115.201101
[29] Sakstein J 2015 Testing gravity using dwarf stars Phys. Rev. D 92 124045 · doi:10.1103/PhysRevD.92.124045
[30] Jain R K, Kouvaris C and Nielsen N G 2016 White dwarf critical tests for modified gravity Phys. Rev. Lett.116 151103 · doi:10.1103/PhysRevLett.116.151103
[31] Gleyzes J, Langlois D, Piazza F and Vernizzi F 2013 Essential building blocks of dark energy J. Cosmol. Astropart. Phys. JCAP08(2013)025 · doi:10.1088/1475-7516/2013/08/025
[32] Bellini E and Sawicki I 2014 Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity J. Cosmol. Astropart. Phys. JCAP07(2014)050 · doi:10.1088/1475-7516/2014/07/050
[33] Gleyzes J, Langlois D and Vernizzi F 2015 A unifying description of dark energy Int. J. Mod. Phys. D 23 1443010 · Zbl 1314.83055 · doi:10.1142/S021827181443010X
[34] Beltran Jimenez J, Piazza F and Velten H 2016 Evading the Vainshtein mechanism with anomalous gravitational wave speed: constraints on modified gravity from binary pulsars Phys. Rev. Lett.116 061101 · doi:10.1103/PhysRevLett.116.061101
[35] Babichev E and Esposito-Farèse G 2013 Time-dependent spherically symmetric covariant galileons Phys. Rev. D 87 044032 · doi:10.1103/PhysRevD.87.044032
[36] Hui L and Nicolis A 2012 Proposal for an observational test of the Vainshtein mechanism Phys. Rev. Lett.109 051304 · doi:10.1103/PhysRevLett.109.051304
[37] Hui L and Nicolis A 2013 No-hair theorem for the Galileon Phys. Rev. Lett.110 241104 · doi:10.1103/PhysRevLett.110.241104
[38] Babichev E and Charmousis C 2014 Dressing a black hole with a time-dependent Galileon J. High Energy Phys. JHEP08(2014)106 · doi:10.1007/JHEP08(2014)106
[39] Sotiriou T P and Zhou S-Y 2014 Black hole hair in generalized scalar – tensor gravity Phys. Rev. Lett.112 251102 · doi:10.1103/PhysRevLett.112.251102
[40] Sotiriou T P and Zhou S-Y 2014 Black hole hair in generalized scalar – tensor gravity: an explicit example Phys. Rev. D 90 124063 · doi:10.1103/PhysRevD.90.124063
[41] Chagoya J, Koyama K, Niz G and Tasinato G 2014 Galileons and strong gravity J. Cosmol. Astropart. Phys. JCAP10(2014)055 · doi:10.1088/1475-7516/2014/10/055
[42] Kobayashi T and Tanahashi N 2014 Exact black hole solutions in shift symmetric scalar – tensor theories PTEP2014 073E02 · Zbl 1331.83081 · doi:10.1093/ptep/ptu096
[43] Cisterna A, Delsate T and Rinaldi M 2015 Neutron stars in general second order scalar – tensor theory: the case of nonminimal derivative coupling Phys. Rev. D 92 044050 · doi:10.1103/PhysRevD.92.044050
[44] Maselli A, Silva H O, Minamitsuji M and Berti E 2015 Slowly rotating black hole solutions in Horndeski gravity Phys. Rev. D 92 104049 · doi:10.1103/PhysRevD.92.104049
[45] Appleby S 2015 Self tuning scalar fields in spherically symmetric spacetimes J. Cosmol. Astropart. Phys. JCAP05(2015)009 · doi:10.1088/1475-7516/2015/05/009
[46] Cisterna A, Delsate T, Ducobu L and Rinaldi M 2016 Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity Phys. Rev. D 93 084046 · doi:10.1103/PhysRevD.93.084046
[47] Maselli A, Silva H O, Minamitsuji M and Berti E 2016 Neutron stars in Horndeski gravity Phys. Rev. D 93 124056 · doi:10.1103/PhysRevD.93.124056
[48] Silva H O, Maselli A, Minamitsuji M and Berti E 2016 Compact objects in Horndeski gravity Int. J. Mod. Phys. D 25 1641006 · Zbl 1347.83027 · doi:10.1142/S0218271816410066
[49] Minamitsuji M and Silva H O 2016 Relativistic stars in scalar – tensor theories with disformal coupling Phys. Rev. D 93 124041 · doi:10.1103/PhysRevD.93.124041
[50] De Felice A, Kase R and Tsujikawa S 2015 Existence and disappearance of conical singularities in Gleyzes-Langlois-Piazza-Vernizzi theories Phys. Rev. D 92 124060 · doi:10.1103/PhysRevD.92.124060
[51] Kase R, Tsujikawa S and De Felice A 2016 Conical singularities and the Vainshtein screening in full GLPV theories J. Cosmol. Astropart. Phys. JCAP03(2016)003 · doi:10.1088/1475-7516/2016/03/003
[52] Deffayet C, Esposito-Farese G and Steer D A 2015 Counting the degrees of freedom of generalized Galileons Phys. Rev. D 92 084013 · doi:10.1103/PhysRevD.92.084013
[53] Babichev E, Charmousis C and Hassaine M 2015 Charged Galileon black holes J. Cosmol. Astropart. Phys. JCAP05(2015)031 · doi:10.1088/1475-7516/2015/05/031
[54] Ip H Y, Sakstein J and Schmidt F 2015 Solar system constraints on disformal gravity theories J. Cosmol. Astropart. Phys. JCAP10(2015)051 · doi:10.1088/1475-7516/2015/10/051
[55] Delgaty M S R and Lake K 1998 Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations Comput. Phys. Commun.115 395-415 · Zbl 1002.83511 · doi:10.1016/S0010-4655(98)00130-1
[56] Lattimer J M 2012 The nuclear equation of state and neutron star masses Ann. Rev. Nucl. Part. Sci.62 485-515 · doi:10.1146/annurev-nucl-102711-095018
[57] Douchin F and Haensel P 2001 A unified equation of state of dense matter and neutron star structure Astron. Astrophys.380 151 · doi:10.1051/0004-6361:20011402
[58] Haensel P and Potekhin A Y 2004 Analytical representations of unified equations of state of neutron-star matter Astron. Astrophys.428 191-7 · Zbl 1065.85005 · doi:10.1051/0004-6361:20041722
[59] Goriely S, Chamel N and Pearson J M 2010 Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas: XII. Stiffness and stability of neutron-star matter Phys. Rev. C 82 035804 · doi:10.1103/PhysRevC.82.035804
[60] Pearson J M, Chamel N, Goriely S and Ducoin C 2012 Inner crust of neutron stars with mass-fitted Skyrme functionals Phys. Rev. C 85 065803 · doi:10.1103/PhysRevC.85.065803
[61] Potekhin A Y, Fantina A F, Chamel N, Pearson J M and Goriely S 2013 Analytical representations of unified equations of state for neutron-star matter Astron. Astrophys.560 A48 · doi:10.1051/0004-6361/201321697
[62] Demorest P, Pennucci T, Ransom S, Roberts M and Hessels J 2010 Shapiro delay measurement of a two solar mass neutron star Nature467 1081-3 · doi:10.1038/nature09466
[63] Heinke C O et al 2014 Improved mass and radius constraints for quiescent neutron stars in Cen and NGC 6397 Mon. Not. R. Astron. Soc.444 443-56 · doi:10.1093/mnras/stu1449
[64] Jain B, Vikram V and Sakstein J 2013 Astrophysical tests of modified gravity: constraints from Distance indicators in the nearby Universe Astrophys. J.779 39 · doi:10.1088/0004-637X/779/1/39
[65] Vikram V, Sakstein J, Davis C and Neil A 2014 Astrophysical tests of modified gravity: stellar and gaseous rotation curves in dwarf galaxies arXiv:1407.6044
[66] Ozel F and Freire P 2016 Masses, radii, and equation of state of neutron stars Ann. Rev. Astron. Astrophys.54 401-44 · doi:10.1146/annurev-astro-081915-023322
[67] Charmousis C, Copeland E J, Padilla A and Saffin P M 2012 General second order scalar – tensor theory, self tuning, and the Fab Four Phys. Rev. Lett.108 051101 · doi:10.1103/PhysRevLett.108.051101
[68] Damour T and Esposito-Farese G 1993 Nonperturbative strong field effects in tensor – scalar theories of gravitation Phys. Rev. Lett.70 2220-3 · doi:10.1103/PhysRevLett.70.2220
[69] Breu C and Rezzolla L 2016 Maximum mass, moment of inertia and compactness of relativistic stars Mon. Not. R. Astron. Soc.459 646-56 · doi:10.1093/mnras/stw575
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.