zbMATH — the first resource for mathematics

Note sur les algèbres de Malcev. (A note on Malcev algebras). (French) Zbl 0574.17014
Let A be a Malcev algebra and B a flexible Malcev-admissible one. It is shown that a multiplication can be defined on the vector space \(C=A\oplus B\) so that it becomes a flexible Malcev-admissible algebra containing A as an ideal and B as a subalgebra. This construction is the extension to the Malcev-admissible case of the one given by H. C. Myung [Proc. Am. Math. Soc. 73, 303-307 (1979; Zbl 0397.17001)].
Reviewer: A.Elduque
17D10 Mal’tsev rings and algebras
17D25 Lie-admissible algebras
17A20 Flexible algebras
Full Text: DOI
[1] A. Abd El Malek;Sur les algèbres de Malcev-admissibles, Rend. Acc. Nazionale dei Lincei, Serie VIII, Vol. 68 (1980), 390–396. · Zbl 0467.17002
[2] A. Koulibaly;Algèbres de Malcev en basses dimensions, Thèse de spécialité en Mathématiques, Université de Montpellier II, Montpellier, Juin 1976.
[3] A. I. Malcev;Analytic loops, Mat. Sb. (N. S.), 36 (78) (1955), 569–576 (en russe).
[4] H. C. Myung;Embedding of Lie algebra into Lie-admissible algebra Proc. Amer. Math. Soc. 73 (1979), 303–307. · Zbl 0397.17001 · doi:10.1090/S0002-9939-1979-0518509-8
[5] K. Yamaguti;On the theory of Malcev algebras, Kumamoto J. Sc., Ser. A, 6, no 1 (1963), 9–45. · Zbl 0138.26203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.