×

Third-order Newton-type methods combined with vector extrapolation for solving nonlinear systems. (English) Zbl 1474.65148

Summary: We present a third-order method for solving the systems of nonlinear equations. This method is a Newton-type scheme with the vector extrapolation. We establish the local and semilocal convergence of this method. Numerical results show that the composite method is more robust and efficient than a number of Newton-type methods with the other vector extrapolations.

MSC:

65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0241.65046
[2] Potra, F. A.; Pták, V., Nondiscrete Induction and Iterative Processes. Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103 (1984), Boston, Mass, USA: Pitman, Boston, Mass, USA · Zbl 0549.41001
[3] Cabay, S.; Jackson, L. W., A polynomial extrapolation method for finding limits and antilimits of vector sequences, SIAM Journal on Numerical Analysis, 13, 5, 734-752 (1976) · Zbl 0359.65029 · doi:10.1137/0713060
[4] Eddy, R. P.; Wang, P. C. C., Extrapolation to the limit of a vector sequence, Information Linkage Between Applied Mathematics and Industry, 387-396 (1979), New York, NY, USA: Academic Press, New York, NY, USA
[5] Mešina, M., Convergence acceleration for the iterative solution of the equations \(X = A X + f\), Computer Methods in Applied Mechanics and Engineering, 10, 2, 165-173 (1977) · Zbl 0344.65019 · doi:10.1016/0045-7825(77)90004-4
[6] Brezinski, C., Généralisations de la transformation de Shanks, de la table de Padé et de l’epsilon-algorithme, Calcolo, 12, 4, 317-360 (1975) · Zbl 0329.65006 · doi:10.1007/BF02575753
[7] Pugachev, B. P., Acceleration of the convergence of iterative processes and a method of solving systems of non-linear equations, USSR Computational Mathematics and Mathematical Physics, 17, 5, 199-207 (1977) · Zbl 0432.65015 · doi:10.1016/0041-5553(77)90023-4
[8] Sidi, A.; Ford, W. F.; Smith, D. A., Acceleration of convergence of vector sequences, SIAM Journal on Numerical Analysis, 23, 1, 178-196 (1986) · Zbl 0596.65016 · doi:10.1137/0723013
[9] Wynn, P., On a device for computing the em(sn) transformation, Mathematical Tables and Other Aids to Computation, 10, 91-96 (1956) · Zbl 0074.04601 · doi:10.2307/2002183
[10] Wynn, P., Acceleration techniques for iterated vector and matrix problems, Mathematics of Computation, 16, 301-322 (1962) · Zbl 0105.10302 · doi:10.1090/S0025-5718-1962-0145647-X
[11] Brezinski, C.; Redivo Zaglia, M., Extrapolation Methods: Theory and practice (1991), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0744.65004
[12] Jbilou, K.; Sadok, H., Vector extrapolation methods. Applications and numerical comparison, Journal of Computational and Applied Mathematics, 122, 1-2, 149-165 (2000) · Zbl 0974.65034 · doi:10.1016/S0377-0427(00)00357-5
[13] King, R. F., A family of fourth order methods for nonlinear equations, SIAM Journal on Numerical Analysis, 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[14] Rall, L. B., Computational Solution of Nonlinear Operator Equations (1979), New York, NY, USA: Robert E. Krieger, New York, NY, USA · Zbl 0476.65033
[15] Candela, V.; Marquina, A., Recurrence relations for rational cubic methods: I. The Halley method, Computing, 44, 2, 169-184 (1990) · Zbl 0701.65043 · doi:10.1007/BF02241866
[16] He, J.; Wang, J.; Yao, J.-C., Local convergence of Newton’s method on Lie groups and uniqueness balls, Abstract and Applied Analysis, 2013 (2013) · Zbl 1307.65079 · doi:10.1155/2013/367161
[17] Candela, V.; Marquina, A., Recurrence relations for rational cubic methods. II. The Chebyshev method, Computing, 45, 4, 355-367 (1990) · Zbl 0714.65061 · doi:10.1007/BF02238803
[18] Gutiérrez, J. M.; Hernández, M. A., Recurrence relations for the super-Halley method, Computers & Mathematics with Applications, 36, 7, 1-8 (1998) · Zbl 0933.65063 · doi:10.1016/S0898-1221(98)00168-0
[19] Ling, Y.; Xu, X.; Yu, S., Convergence behavior for Newton-Steffensen’s method under \(\gamma \)-condition of second derivative, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.65113 · doi:10.1155/2013/682167
[20] Hernández, M. A., Chebyshev’s approximation algorithms and applications, Computers and Mathematics with Applications, 41, 3-4, 433-445 (2001) · Zbl 0985.65058 · doi:10.1016/S0898-1221(00)00286-8
[21] Ezquerro, J. A.; Hernández, M. A., Recurrence relations for Chebyshev-type methods, Applied Mathematics and Optimization, 41, 2, 227-236 (2000) · Zbl 0952.47050 · doi:10.1007/s002459911012
[22] Amat, S.; Busquier, S.; Magreñán, Á. A., Reducing chaos and bifurcations in Newton-type methods, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.65095 · doi:10.1155/2013/726701
[23] Wang, X.; Kou, J.; Gu, C., Semilocal convergence of a class of modified super-Halley methods in Banach spaces, Journal of Optimization Theory and Applications, 153, 3, 779-793 (2012) · Zbl 1250.65075 · doi:10.1007/s10957-012-9985-9
[24] Proinov, P. D., New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, Journal of Complexity, 26, 1, 3-42 (2010) · Zbl 1185.65095 · doi:10.1016/j.jco.2009.05.001
[25] Xu, X.; Xiao, Y.; Liu, T., Semilocal convergence analysis for inexact Newton method under weak condition, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.90146 · doi:10.1155/2012/982925
[26] Amat, S.; Magreñán, Á. A.; Romero, N., On a two-step relaxed Newton-type method, Applied Mathematics and Computation, 219, 24, 11341-11347 (2013) · Zbl 1304.65149 · doi:10.1016/j.amc.2013.04.061
[27] Argyros, I. K.; Hilout, S., Improved generalized differentiability conditions for Newton-like methods, Journal of Complexity, 26, 3, 316-333 (2010) · Zbl 1196.65100 · doi:10.1016/j.jco.2009.12.001
[28] Gutiérrez, J. M.; Magreñán, Á. A.; Romero, N., On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Applied Mathematics and Computation, 221, 79-88 (2013) · Zbl 1329.65101 · doi:10.1016/j.amc.2013.05.078
[29] Lin, R.; Zhao, Y.; Šmarda, Z.; Khan, Y.; Wu, Q., Newton-Kantorovich and Smale uniform type convergence theorem for a deformed Newton method in Banach spaces, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.65114 · doi:10.1155/2013/923898
[30] Kou, J.; Sun, S.; Yu, B., Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media, Journal of Applied Mathematics, 2011 (2011) · Zbl 1381.76341 · doi:10.1155/2011/861905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.