×

Dual potentials for capacity constrained optimal transport. (English) Zbl 1331.90095

The main result is devoted to the existence of dual potentials for the capacity constrained optimal transport and the characterization of optimality. As a significant consequence, the authors derive the classical Kantorovich duality of the optimal transport from Levin’s duality.

MSC:

90C46 Optimality conditions and duality in mathematical programming
49J45 Methods involving semicontinuity and convergence; relaxation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bertrand, J., Puel, M.: The optimal mass transport problem for relativistic costs. Calc. Var. PDE 46, 353-374 (2013) · Zbl 1287.49048 · doi:10.1007/s00526-011-0485-9
[2] Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305, 805-808 (1987) · Zbl 0652.26017
[3] Kantorovich, L.: On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199-201 (1942) · Zbl 0061.09705
[4] Kellerer, H.G.: Marginalprobleme für Funktionen. Math. Ann. 154, 147-156 (1964) · Zbl 0128.05303
[5] Kellerer, H.G.: Maßtheoretische marginalprobleme. Math. Ann. 153, 168-198 (1964) · Zbl 0118.05003 · doi:10.1007/BF01360315
[6] Korman, J., McCann, R.J.: Optimal transportation with capacity constraints. Trans. Am. Math. Soc. (in press) · Zbl 1305.90065
[7] Korman, J., McCann, R.J.: Insights into capacity constrained optimal transport. Proc. Natl. Acad. Sci 110, 10064-10067 (2013) · doi:10.1073/pnas.1221333110
[8] Korman, J., McCann, R.J., Seis, C: An elementary approach to linear programming duality with application to capacity constrained transport. J. Convex Anal. arXiv:1309.3022 (in press) · Zbl 1326.49054
[9] Levin, V.L.: The problem of mass transfer in a topological space, and probability measures having given marginal measures on the product of two spaces. Sov. Math. (Doklady) 29, 638-643 (1984) · Zbl 0622.60004
[10] McCann, R.J., Guillen, N.: Five lectures on optimal transportation: geometry, regularity, and applications. In: Dafni, G. et al. (ed.) Analysis and geometry of metric measure spaces: lecture notes of the séminaire de Mathématiques Supérieure (SMS) Montréal 2011, pp. 145-180. American Mathematical Society, Providence (2013) · Zbl 1271.49034
[11] Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666-704 (1781) · Zbl 0652.26017
[12] Rachev, S.T., Rüschendorf, L.: Mass transportation problems, vol. 1. Springer, New York (1998) · Zbl 0990.60500
[13] Reed, M., Simon, B.: Functional analysis.In: Methods of modern mathematical physics, vol. 1, Academic Press, San Diego (1980) · Zbl 0459.46001
[14] Villani, C.: Optimal transport. Old and new. Springer, New York (2009) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.