zbMATH — the first resource for mathematics

Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids. (English) Zbl 1272.76026
Summary: The propagation conditions of acceleration waves are investigated for a viscoelastic fluid using the Johnson-Segalman viscoelastic model. Explicit expressions are obtained for the wave speeds adopting the theory of singular surfaces. The simple shearing motion, uniaxial, biaxial extension and uniform dilation are considered as the initial states of deformation. The variations of the speeds with the propagation direction, stretch ratio and material parameters are presented.

76A10 Viscoelastic fluids
Full Text: DOI Link
[1] Balaban, M.; Green, A. E.; Naghdi, P. M.: Acceleration waves in elastic – plastic materials, Int. J. Eng. sci. 8, 315-335 (1970) · Zbl 0219.73030
[2] Chen, P. J.: Growth and decay of waves in solids, Handbuch der physik /3, 303-402 (1973)
[3] Coleman, B. D.; Gurtin, M. E.: Waves in materials with memory – II. On the growth and decay of one-dimensional acceleration waves, Arch. rat. Mech. anal. 19, 239-265 (1965) · Zbl 0244.73017
[4] Coleman, B. D.; Gurtin, M. E.: Waves in materials with memory – III. Thermodynamic influences on the growth and decay of acceleration waves, Arch. rat. Mech. anal. 19, 266-298 (1965) · Zbl 0244.73018
[5] Coleman, B. D.; Gurtin, M. E.; Herrera, I. R.: Waves in materials with memory I. The velocity of one-dimensional shock and acceleration waves, Arch. rat. Mech. anal. 19, 1-19 (1965) · Zbl 0138.22006
[6] Dafermos, C. M.: Development of singularities in the motion of materials with fading memory, Arch. rat. Mech. anal. 91, 193-205 (1986) · Zbl 0595.73026
[7] Eringen, A. C.; &scedil, E. S.; Uhubi: Elastodynamics, Elastodynamics (1975) · Zbl 0344.73036
[8] Ferry, J. D.: Viscoelastic properties of polymers, (1980)
[9] Gültop, T.: On the propagation of acceleration waves in incompressible hyperelastic solids, J. sound vib. 264, 377-389 (2003)
[10] Gültop, T.; Kopaç, M.: Determination of acoustic wave speeds in a viscoelastic fluid, J. fac. Eng. arch. Gazi univ. 12, 105-116 (1995)
[11] Jr., M. W. Johnson; Segalman, D.: A model for viscoelastic fluid behavior which allows non-affine deformation, J. non-Newtonian fluid mech. 2, 255-270 (1977) · Zbl 0369.76008
[12] Kolkka, R. W.; Malkus, D. S.; Hansen, M. G.; Ierley, G. R.: Spurt phenomena of the Johnson – Segalman fluid and related models, J. non-Newtonian fluid mech. 29, 303-335 (1988)
[13] Kopaç, M.; Hortaçsu, A.; Arıkol, M.: Comparative evaluation of some existing rate-type constitutive equations for a viscoelastic fluid undergoing wiggle flow, J. non-Newtonian fluid mech. 68, 1-15 (1997)
[14] Lakes, R. S.: Viscoelastic solids, (1998) · Zbl 0937.74017
[15] Ogden, R. W.: Growth and decay of acceleration waves in incompressible elastic solids, Q. J. Mech. appl. Math. 27, 451-464 (1974) · Zbl 0335.73009
[16] Phan-Thien, N.: Understanding viscoelasticity, basics of rheology, (2002) · Zbl 1036.74001
[17] Rao, I. J.: Flow of a Johnson – Segalman fluid between rotating co-axial cylinders with and without suction, Int. J. Non-linear mech. 34, 63-70 (1999) · Zbl 1342.76010
[18] Rao, I. J.; Rajagopal, K. R.: Some simple flows of a Johnson – Segalman fluid, Acta mech. 132, 209-219 (1999) · Zbl 0928.76012
[19] Rao, I. J.; Rajagopal, K. R.: The effect of the slip boundary condition on the flow of fluids in a channel, Acta mech. 135, 113-126 (1999) · Zbl 0936.76013
[20] Reddy, B. D.: The propagation and growth of acceleration waves in constrained thermoelastic materials, J. elast. 14, 387-402 (1984) · Zbl 0573.73032
[21] Reddy, B. D.; Gültop, T.: Acceleration waves in finitely deformed elastic – plastic solids, Eur. J. Mech. A-solid 14, 529-551 (1995) · Zbl 0842.73026
[22] Sadd, M. H.: Finite amplitude acceleration waves in incompressible BKZ viscoelastic fluids – the propagation condition, Int. J. Non-linear mech. 10, 237-243 (1975) · Zbl 0321.76003
[23] Scott, N. H.: Acceleration waves in constrained elastic materials, Arch. rat. Mech. anal. 58, 57-75 (1975) · Zbl 0339.73006
[24] Truesdell, C.; Toupin, R. A.: Classical field theories of mechanics, Handbuch der physik /1 (1960) · Zbl 0119.19201
[25] Wilson, H. J.; Fielding, S. M.: Linear instability of planar shear banded flow of both diffusive and non-diffusive Johnson – Segalman fluids, J. non-Newton fluid mech. 138, 181-196 (2006) · Zbl 1195.76176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.