×

zbMATH — the first resource for mathematics

On the alternating groups. III. (English) Zbl 0205.03505

MSC:
20B30 Symmetric groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Glauberman, G, Central elements of core free groups, J. algebra, 4, 403-420, (1966) · Zbl 0145.02802
[2] Gorenstein, D, Finite groups, (1967), Harper and Row New York · Zbl 0168.27203
[3] Held, D, A characterization of the alternating groups of degree eight and nine, J. algebra, 7, 218-237, (1967) · Zbl 0189.02501
[4] Held, D, A characterization of some multiply transitive permutation groups I, Illinois J., 13, 224-240, (1969) · Zbl 0167.29002
[5] Huppert, B, Endliche gruppen I, (1967), Springer-Verlag Berlin · Zbl 0217.07201
[6] Kondo, T, On the alternating groups, J. fac. sci. Tokyo, 15, 87-97, (1968) · Zbl 0196.04701
[7] Kondo, T, On the alternating groups II, J. math. soc. Japan, 21, 116-139, (1969) · Zbl 0196.04702
[8] Kondo, T, On finite groups with a 2-Sylow subgroup isomorphic to that of the symmetric group of degree 4n, J. math. soc. Japan, 20, 695-713, (1968) · Zbl 0245.20021
[9] Kondo, T, A characterization of the alternating group of degree eleven, Illinois J., 13, 528-541, (1969) · Zbl 0194.03804
[10] Specht, W, Eine verallgemeinerung der symmetrischen gruppe, (), 1-32 · JFM 58.0127.03
[11] Suzuki, M, On finite groups containing an element of order four which commutes only with its powers, Illinois J. math., 3, 255-271, (1959) · Zbl 0085.01601
[12] Wielandt, H, Beziehungen zwischen den fixpunktzahlen von automorphismen-gruppen einer endlichen gruppe, Math. zeit., 73, 146-158, (1960) · Zbl 0093.02302
[13] Yamaki, H, A characterization of the alternating groups of degree 12, 13, 14, 15, J. math. soc. Japan, 20, 673-694, (1968) · Zbl 0167.02301
[14] Yamaki, H, A characterization of the finite simple group sp(6, 2), J. math. soc. Japan, 21, 334-356, (1969) · Zbl 0184.04901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.