×

Hybrid modeling, identification, and predictive control: An application to hybrid electric vehicle energy management. (English) Zbl 1237.93132

Majumdar, Rupak (ed.) et al., Hybrid systems: Computation and control. 12th international conference, HSCC 2009, San Francisco, CA, USA, April 13–15, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-00601-2/pbk). Lecture Notes in Computer Science 5469, 321-335 (2009).
Summary: Rising fuel prices and tightening emission regulations have resulted in an increasing need for advanced powertrain systems and systematic model-based control approaches. Along these lines, this paper illustrates the use of hybrid modeling and model predictive control for a vehicle equipped with an advanced hybrid powertrain. Starting from an existing high fidelity nonlinear simulation model based on experimental data, the hybrid dynamical model is developed through the use of linear and piecewise affine identification methods. Based on the resulting hybrid dynamical model, a hybrid MPC controller is tuned and its effectiveness is demonstrated through closed-loop simulations with the high-fidelity nonlinear model.
For the entire collection see [Zbl 1161.93001].

MSC:

93C95 Application models in control theory
93A30 Mathematical modelling of systems (MSC2010)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dextreit, C., Assadian, F., Kolmanovsky, I.V., Mahtani, J., Burnham, K.: Hybrid electric vehicle energy management using game theory. In: Proceedings of SAE World Congress, Detroit, MI (April 2008) · doi:10.4271/2008-01-1317
[2] Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control. PhD thesis, LIDS-TH 2304, Massachusetts Institute of Technology, Cambridge, MA (1995)
[3] Heemels, W.P.M.H., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001) · Zbl 0990.93056 · doi:10.1016/S0005-1098(01)00059-0
[4] Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., Sastry, S.S.: Dynamical properties of hybrid automata. IEEE Trans. Automatic Control 48, 2–17 (2003) · Zbl 1364.93503 · doi:10.1109/TAC.2002.806650
[5] Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999) · Zbl 1049.93514 · doi:10.1016/S0005-1098(98)00178-2
[6] Torrisi, F.D., Bemporad, A.: HYSDEL – A tool for generating computational hybrid models. IEEE Trans. Contr. Systems Technology 12(2), 235–249 (2004) · doi:10.1109/TCST.2004.824309
[7] Sontag, E.D.: Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automatic Control 26(2), 346–358 (1981) · Zbl 0474.93039 · doi:10.1109/TAC.1981.1102596
[8] Bemporad, A.: Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form. IEEE Trans. Automatic Control 49(5), 832–838 (2004) · Zbl 1365.93087 · doi:10.1109/TAC.2004.828315
[9] Geyer, T., Torrisi, F.D., Morari, M.: Efficient Mode Enumeration of Compositional Hybrid Models. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 216–232. Springer, Heidelberg (2003) · Zbl 1032.93035 · doi:10.1007/3-540-36580-X_18
[10] Bemporad, A.: Hybrid Toolbox – User’s Guide (January 2004), http://www.dii.unisi.it/hybrid/toolbox
[11] Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to piecewise affine system identification. IEEE Trans. Automatic Control 50(10), 1567–1580 (2005) · Zbl 1365.93100 · doi:10.1109/TAC.2005.856667
[12] Paoletti, S., Roll, J.: PWAID: Piecewise affine system identification toolbox (2007)
[13] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) · doi:10.1016/S0967-0661(02)00186-7
[14] Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An MPC/hybrid system approach to traction control. IEEE Trans. Contr. Systems Technology 14(3), 541–552 (2006) · Zbl 0991.93532 · doi:10.1109/TCST.2005.860527
[15] Giorgetti, N., Ripaccioli, G., Bemporad, A., Kolmanovsky, I.V., Hrovat, D.: Hybrid Model Predictive Control of Direct Injection Stratified Charge Engines. IEEE/ASME Transactions on Mechatronics 11(5), 499–506 (2006) · doi:10.1109/TMECH.2006.882979
[16] Di Cairano, S., Bemporad, A., Kolmanovsky, I., Hrovat, D.: Model predictive control of magnetically actuated mass spring dampers for automotive applications. Int. J. Control 80(11), 1701–1716 (2007) · Zbl 1130.93345 · doi:10.1080/00207170701379804
[17] Vašak, M., Baotić, M., Morari, M., Petrović, I., Perić, N.: Constrained optimal control of an electronic throttle. Int. J. Control 79(5), 465–478 (2006) · Zbl 1117.93013 · doi:10.1080/00207170600587572
[18] Corona, D., De Schutter, B.: Adaptive cruise control for a smart car: A comparison benchmark for MPC-PWA control methods. IEEE Trans. Contr. Systems Technology 16(2), 365–372 (2008) · doi:10.1109/TCST.2007.908212
[19] Ortner, P., del Re, L.: Predictive control of a diesel engine air path. IEEE Trans. Contr. Systems Technology 15(3), 449–456 (2007) · doi:10.1109/TCST.2007.894638
[20] ILOG, Inc. CPLEX 9.0 User Manual. Gentilly Cedex, France (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.