Koch, Alan; Malagon, Audrey \(p\)-adic order bounded group valuations on Abelian groups. (English) Zbl 1133.16028 Glasg. Math. J. 49, No. 2, 269-279 (2007). For a finite group \(G\), and a local field \(K\) with ring of integers \(R\) and uniformizer \(\pi\), a \(p\)-adic order bounded group valuation is a function \(\xi\colon G\to\mathbb{Z}\cup\{\infty\}\) which takes its finite values on \(G\setminus\{1\}\) and satisfies \(\xi(gh)\geq\min\{\xi(g),\xi(h)\}\) like ordinary valuations, as well as \[ \xi([g,h])\geq\xi(g)+\xi(h),\quad\xi(g^p)\geq p\xi(g), \] together with an inequality depending on the arithmetic of \(K\). To any such valuation, the \(R\)-algebra generated by the elements \(\pi^{-\xi(g)}(1-g)\) is a Hopf order in \(KG\) [see R. G. Larson, J. Algebra 38, 414-452 (1976; Zbl 0407.20007)]. For \(G\) Abelian, the authors construct the \(p\)-adic order bounded group valuations \(\xi\). They characterize \(\xi\) in terms of the corresponding chain of subgroups of \(G\). Calculations are provided for cyclic or elementary Abelian groups \(G\). An explicit description of the associated Larson orders is given for \(p\)-groups \(G\) of order \(\leq p^2\). Reviewer: Wolfgang Rump (Stuttgart) Cited in 1 Document MSC: 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) 16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras) 16S34 Group rings Keywords:order bounded group valuations; Hopf orders; Larson orders PDF BibTeX XML Cite \textit{A. Koch} and \textit{A. Malagon}, Glasg. Math. J. 49, No. 2, 269--279 (2007; Zbl 1133.16028) Full Text: DOI References: [1] DOI: 10.1006/jabr.1994.1293 · Zbl 0820.16036 · doi:10.1006/jabr.1994.1293 [2] Childs, Mem. Amer. Math. Soc. 136 pp 1– (1998) [3] Tate, Ann. Sci. ?cole Norm. Sup. 3 pp 1– (1970) [4] Childs, Illinois J. Math. 48 pp 923– (2004) [5] DOI: 10.1007/BF02571782 · Zbl 0737.11038 · doi:10.1007/BF02571782 [6] DOI: 10.1090/S0002-9947-05-03728-1 · Zbl 1084.16013 · doi:10.1090/S0002-9947-05-03728-1 [7] DOI: 10.1353/ajm.1996.0036 · Zbl 0857.16039 · doi:10.1353/ajm.1996.0036 [8] DOI: 10.1016/0021-8693(76)90232-5 · Zbl 0407.20007 · doi:10.1016/0021-8693(76)90232-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.