×

zbMATH — the first resource for mathematics

The stability of a quadratic functional equation with the fixed point alternative. (English) Zbl 1189.39031
Summary: J. R. Lee, J. S. An and C. Park [ibid. 2008, Article ID 628178, 8 p. (2008; Zbl 1146.39045)] introduced the quadratic functional equation \(f(2x+y)+f(2x - y)=8f(x)+2f(y)\) and proved the stability of the quadratic functional equation in the spirit of Hyers, Ulam and Th. M. Rassias. Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation in Banach spaces.
MSC:
39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1960. · Zbl 0086.24101
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[4] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[5] P. G\uavruta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[6] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. · Zbl 0482.47033 · doi:10.1016/0022-1236(82)90048-9
[7] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Bulletin des Sciences Mathématiques, vol. 108, no. 4, pp. 445-446, 1984. · Zbl 0599.47106
[8] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989. · Zbl 0672.41027 · doi:10.1016/0021-9045(89)90041-5
[9] F. Skof, “Local properties and approximation of operators,” Rendiconti del Seminario Matematico e Fisico di Milano, vol. 53, pp. 113-129, 1983. · Zbl 0599.39007 · doi:10.1007/BF02924890
[10] P. W. Cholewa, “Remarks on the stability of functional equations,” Aequationes Mathematicae, vol. 27, no. 1-2, pp. 76-86, 1984. · Zbl 0549.39006 · doi:10.1007/BF02192660 · eudml:137013
[11] S. Czerwik, “On the stability of the quadratic mapping in normed spaces,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 62, pp. 59-64, 1992. · Zbl 0779.39003 · doi:10.1007/BF02941618
[12] D. Mihe\ct and V. Radu, “On the stability of the additive Cauchy functional equation in random normed spaces,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567-572, 2008. · Zbl 1139.39040 · doi:10.1016/j.jmaa.2008.01.100
[13] C. Park, “Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras,” Fixed Point Theory and Applications, vol. 2007, Article ID 50175, 15 pages, 2007. · Zbl 1167.39018 · doi:10.1155/2007/50175 · eudml:55829
[14] C. Park, “Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach,” Fixed Point Theory and Applications, vol. 2008, Article ID 493751, 9 pages, 2008. · Zbl 1146.39048 · doi:10.1155/2008/493751 · eudml:54565
[15] C. Park, Y. S. Cho, and M.-H. Han, “Functional inequalities associated with Jordan-von Neumann-type additive functional equations,” Journal of Inequalities and Applications, vol. 2007, Article ID 41820, 13 pages, 2007. · Zbl 1133.39024 · doi:10.1155/2007/41820 · eudml:128654
[16] C. Park and J. Cui, “Generalized stability of C*-ternary quadratic mappings,” Abstract and Applied Analysis, vol. 2007, Article ID 23282, 6 pages, 2007. · Zbl 1158.39020 · doi:10.1155/2007/23282 · eudml:55224
[17] C. Park and J. Hou, “Homomorphisms between C*-algebras associated with the Trif functional equation and linear derivations on C*-algebras,” Journal of the Korean Mathematical Society, vol. 41, no. 3, pp. 461-477, 2004. · Zbl 1058.39025 · doi:10.4134/JKMS.2004.41.3.461
[18] C. Park and A. Najati, “Homomorphisms and derivations in C*-algebras,” Abstract and Applied Analysis, vol. 2007, Article ID 80630, 12 pages, 2007. · Zbl 1157.39017 · doi:10.1155/2007/80630 · eudml:55172
[19] C. Park and J. Park, “Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping,” Journal of Difference Equations and Applications, vol. 12, no. 12, pp. 1277-1288, 2006. · Zbl 1114.39011 · doi:10.1080/10236190600986925
[20] Th. M. Rassias, “On the stability of the quadratic functional equation and its applications,” Studia Universitatis Babe\cs-Bolyai Mathematica, vol. 43, no. 3, pp. 89-124, 1998. · Zbl 1009.39025
[21] Th. M. Rassias, “The problem of S. M. Ulam for approximately multiplicative mappings,” Journal of Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352-378, 2000. · Zbl 0958.46022 · doi:10.1006/jmaa.2000.6788
[22] Th. M. Rassias, “On the stability of functional equations in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 264-284, 2000. · Zbl 0964.39026 · doi:10.1006/jmaa.2000.7046
[23] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23-130, 2000. · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[24] Th. M. Rassias and P. \vSemrl, “On the Hyers-Ulam stability of linear mappings,” Journal of Mathematical Analysis and Applications, vol. 173, no. 2, pp. 325-338, 1993. · Zbl 0789.46037 · doi:10.1006/jmaa.1993.1070
[25] Th. M. Rassias and K. Shibata, “Variational problem of some quadratic functionals in complex analysis,” Journal of Mathematical Analysis and Applications, vol. 228, no. 1, pp. 234-253, 1998. · Zbl 0945.30023 · doi:10.1006/jmaa.1998.6129
[26] L. C\vadariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,” in Iteration Theory, vol. 346 of Grazer Mathematische Berichte, pp. 43-52, Karl-Franzens-Universitaet Graz, Graz, Austria, 2004. · Zbl 1060.39028
[27] J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative for contractions on a generalized complete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305-309, 1968. · Zbl 0157.29904 · doi:10.1090/S0002-9904-1968-11933-0
[28] V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol. 4, no. 1, pp. 91-96, 2003. · Zbl 1051.39031
[29] J. Lee, J. S. An, and C. Park, “On the stability of quadratic functional equations,” Abstract and Applied Analysis, vol. 2008, Article ID 628178, 8 pages, 2008. · Zbl 1146.39045 · doi:10.1155/2008/628178 · eudml:54564
[30] L. C\vadariu and V. Radu, “Fixed points and the stability of Jensen’s functional equation,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, 2003. · Zbl 1043.39010 · emis:journals/JIPAM/v4n1/index.html · eudml:123714
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.