×

Second-order nonlinear differential equations with an infinite set of periodic solutions. (English) Zbl 1277.34048

Nonlinear Oscil., N.Y. 11, No. 4, 521-526 (2008) and Nelinijni Kolyvannya 11, No. 4, 495-500 (2008).
Summary: For the differential equation \(u'' = f(t, u, u')\), where the function \(f: R \times R^2 \to R\) is periodic in the first variable and \(f(t, x, 0) \equiv 0\), sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found.

MSC:

34C25 Periodic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Fučik and A. Kufner, Nonlinear Differential Equations, Elsevier, Amsterdam (1980).
[2] R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin (1977). · Zbl 0339.47031
[3] I. Kiguradze, Some Singular Boundary-Value Problems for Ordinary Differential Equations [in Russian], Tbilisi University Press, Tbilisi (1975). · Zbl 0307.34003
[4] I. Kiguradze, ”Boundary-value problems for systems of ordinary differential equations,” in: VINITI Series in Contemporary Problems of Mathematics, Latest Achievements [in Russian], Vol. 30 (1987), pp. 3–103. · Zbl 0631.34020
[5] I. Kiguradze, ”On a resonance periodic problem for nonautonomous higher-order differential equations,” Differents. Uravn., 44, No. 8, 1022–1032 (2008).
[6] I. Kiguradze, N. Partsvania, and B. Puža, ”On periodic solutions of higher-order functional differential equations,” Boundary-Value Probl., 1–18 (2008).
[7] I. Kiguradze and S. Stanék, ”On periodic boundary-value problem for the equation u”=f(t, u, u’) with one-sided growth restrictions on f,” Nonlin. Analysis, 48, No. 7, 1065–1075 (2002). · Zbl 1004.34012 · doi:10.1016/S0362-546X(00)00235-2
[8] M. A. Krasnosel’skii, The Operator of Translation along the Trajectories of Differential Equations, American Mathematical Society, Providence, RI (1968).
[9] A. Lasota and Z. Opial, ”Sur les solutions périodiques des équations différentielles ordinaires,” Ann. Pol. Math., 16, 69–94 (1964). · Zbl 0142.35303
[10] J. Mawhin, ”Continuation theorems and periodic solutions of ordinary differential equations,” in: Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 472, Kluwer, Dordrecht (1995), pp. 291–375. · Zbl 0834.34047
[11] S. Mukhigulashvili, ”On the solvability of a periodic problem for second-order nonlinear functional differential equations,” Differents. Uravn., 42, No. 3, 356–365 (2006). · Zbl 1136.34327
[12] P. Omari and F. Zanolin, ”On forced nonlinear oscillations in nth-order differential systems with geometric conditions,” Nonlin. Analysis, Theory Meth. Appl., 8, 723–748 (1984). · Zbl 0542.34037 · doi:10.1016/0362-546X(84)90072-5
[13] R. Reissig, G. Sansone, and R. Conti, Qualitative Theorie Nichtlineare Differentialgleichungen, Edizioni Cremonese, Roma (1963).
[14] A. M. Samoilenko and V. N. Laptinskii, ”On estimates for periodic solutions of differential equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 30–32 (1982).
[15] A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods of Investigating Periodic Solutions, Mir, Moscow (1980).
[16] Yu.V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities [in Russian], Nauka i Tekhnika, Minsk (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.