×

Conformally invariant systems of nonlinear PDE of Liouville type. (English) Zbl 0858.35035

The question is under which conditions on \(\gamma\) all solutions \(u_i\) \((i=1,\dots,N)\) of \[ -\Delta u_i(x)=\prod_{j\in{\mathcal I}}\exp(\gamma^{i,j}u_j), \qquad x\in\mathbb{R}^2, \] with \(N\) finite mass conditions \(\int_{\mathbb{R}^2} \exp(u_i)dx<\infty\), and \(\sum_{j\in{\mathcal I}}\gamma^{i,j}=1\), \(i\in{\mathcal I}\), are radially symmetric and decreasing about some point. For the scalar case \(N=1\) it is shown that the theorem in question can be proved by use of an isoperimetric inequality in its strict form and a Rellich-Pohozaev identity. Main theme of the paper is that this technique applies under certain conditions on the matrix \(\gamma=(\gamma^{i,j})\) to the above system as well to get an analog theorem.

MSC:

35J60 Nonlinear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [B]C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. · Zbl 0436.35063
[2] [Be]W. Beckner, to appear. · Zbl 1360.26016
[3] [Ben]W. H. Bennett, Magnetically self-focussing streams, Phys. Rev. 45 (1934), 890–897 · doi:10.1103/PhysRev.45.890
[4] [BrMe]H. Brezis, F. Merle, Uniform estimates and blow-up behavior of solutions of u=V(x)e u in two dimensions. Commun. PDE 16 (1991), 1223–1253. · Zbl 0746.35006 · doi:10.1080/03605309108820797
[5] [CLMP]E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanical description, Commun. Math. Phys. 143 (1992), 501–525. · Zbl 0745.76001 · doi:10.1007/BF02099262
[6] [CaLo]E.A. Carlen, M. Loss, Competing symmetries, the logarithmic HLS inequality, and Onofri’s inequality onS n , Geom. Funct. Anal. 2 (1992), 90–104. · Zbl 0754.47041 · doi:10.1007/BF01895706
[7] [ChKi]S. Chanillo, M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys. 160:2 (1994), 217–238. · Zbl 0821.35044 · doi:10.1007/BF02103274
[8] [ChLi]S. Chanillo, Y.Y. Li, Continuity of solutions of uniformly elliptic equations in \(\mathbb{R}\) 2 , Manuscr. Math. 77 (1992), 415–433. · Zbl 0797.35031 · doi:10.1007/BF02567065
[9] [CheLi]W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–622. · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[10] [ChoW]K.S. Chou, T.Y.H. Wan, Asymptotic radial symmetry for solutions of {\(\Delta\)}u+e u =0 in a punctured disc, Pac. J. Math. 163 (1994), 269–276. · Zbl 0794.35049
[11] [ESp]G. Eyink, H. Spohn, Negative temperature states and large-scale long-lived vortices in two-dimensional turbulence, J. Stat. Phys. 70 (1993), 833–886. · Zbl 0945.82568 · doi:10.1007/BF01053597
[12] [GNNi]B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 (1979), 209–243. · Zbl 0425.35020 · doi:10.1007/BF01221125
[13] [GiT]D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, New York (1983). · Zbl 0562.35001
[14] [KP]C. Kesavan, F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities, Appl. Anal. 54 (1994), 27–37. · Zbl 0833.35040 · doi:10.1080/00036819408840266
[15] [Ki]M.K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math. 46 (1993), 27–56. · Zbl 0811.76002 · doi:10.1002/cpa.3160460103
[16] [KiL]M.K.-H. Kiessling, J.L. Lebowitz, Dissipative Stationary Plasmas: Kinetic Modeling, Bennett’s Pinch, and generalizations, Phys. Plasmas1 (1994), 1841–1849. · doi:10.1063/1.870639
[17] [Li]C.-M. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Commun. PDE 16 (1991), 585–615. · Zbl 0741.35014 · doi:10.1080/03605309108820770
[18] [Lio]P.-L. Lions, Two geometrical properties of solutions of semilinear problems, Appl. Anal. 12 (1981), 267–272. · Zbl 0468.35045 · doi:10.1080/00036818108839367
[19] [Liou]J. Liouville, Sur l’equation aux différences partielles log{\(\lambda\)}/{\(\pm\)}2a 2 = 0, J. Math. 18 (1853), 71–72.
[20] [O]M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971), 247–258. · Zbl 0236.53042
[21] [On]E. Onofri, On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys. 86 (1982), 321–326. · Zbl 0506.47031 · doi:10.1007/BF01212171
[22] [OsPhS]B. Osgood, R. Phillips, P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), 148–211. · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[23] [Po]S.I. Pohozaev, Eigenfunctions of the equation {\(\Delta\)}u+{\(\lambda\)}f(u)=0. Sov. Math. Dokl. 5 (1965), 1408–1411. · Zbl 0141.30202
[24] [R]F. Rellich, Darstellung der Eigenwerte von {\(\Delta\)}u+{\(\lambda\)}u=0 durch ein Randwertintegral, Math. Z. 46 (1940), 635–636. · Zbl 0023.04204 · doi:10.1007/BF01181459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.