zbMATH — the first resource for mathematics

Non-global logs and clustering impact on jet mass with a jet veto distribution. (English) Zbl 1309.81279
Summary: There has recently been much interest in analytical computations of jet mass distributions with and without vetos on additional jet activity [S. D. Ellis et al.,, Phys, Lett. B 689, No. 2–3, 82–89 (2010); S. D. Ellis et al., ibid. 2010, No.11, Paper No. 101, 83 p. (2010), arxiv:1001.0014; A. Banfi et al., ibid. 2010, No. 8, Paper No. 064, 23 p. (2010; Zbl 1309.81259); R. Kelley et al., arxiv:1102.0561 (2011); A. Hornig et al., ibid. 2012, No. 1, Paper. No. 149, 35 p. (2012), arxiv:1110.0004;H.-n. Li et al., Phys. Rev, Lett. 107, No. 15, Article No. 152001, 5 p. (2011)]. An important issue affecting such calculations, particularly at next-to-leading logarithmic (NLL) accuracy, is that of non-global logarithms as well as logarithms induced by jet definition, as we pointed out in an earlier work [A. Banfi et al., loc. cit.]. In this paper, we extend our previous calculations by independently deriving the full jet-radius analytical form of non-global logarithms, in the anti-\(k_{t}\) jet algorithm. Employing the small-jet radius approximation, we also compute, at fixed-order, the effect of jet clustering on both \(C_F^2\) and \(C_{F}C_{A}\) colour channels. Our findings for the \(C_{F}C_{A}\) channel confirm earlier analytical calculations of non-global logarithms in soft-collinear effective theory [A. Hornig et al., loc.cit.]. Moreover, all of our results, as well as those of [A. Banfi et al., loc. cit.], are compared to the output of the numerical program EVENT2. We find good agreement between analytical and numerical results both with and without final state clustering.

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81U35 Inelastic and multichannel quantum scattering
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Full Text: DOI arXiv
[1] Ellis, SD; Hornig, A.; Lee, C.; Vermilion, CK; Walsh, JR, Consistent factorization of jet observables in exclusive multijet cross-sections, Phys. Lett., B 689, 82, (2010)
[2] Ellis, SD; Vermilion, CK; Walsh, JR; Hornig, A.; Lee, C., Jet shapes and jet algorithms in SCET, JHEP, 11, 101, (2010)
[3] Banfi, A.; Dasgupta, M.; Khelifa-Kerfa, K.; Marzani, S., Non-global logarithms and jet algorithms in high-pt jet shapes, JHEP, 08, 064, (2010)
[4] R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [INSPIRE].
[5] Hornig, A.; Lee, C.; Walsh, JR; Zuberi, S., Double non-global logarithms in-n-out of jets, JHEP, 01, 149, (2012)
[6] Li, H-n; Li, Z.; Yuan, C-P, QCD resummation for jet substructures, Phys. Rev. Lett., 107, 152001, (2011)
[7] Dasgupta, M.; Salam, GP, Event shapes in e\^{}{+}e\^{}{−} annihilation and deep inelastic scattering, J. Phys., G 30, r143, (2004)
[8] Beneke, M., Renormalons, Phys. Rept., 317, 1, (1999)
[9] B. Webber, Hadronization, hep-ph/9411384 [INSPIRE].
[10] M. Beneke and V.M. Braun, Renormalons and power corrections, hep-ph/0010208 [INSPIRE].
[11] R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge U.K. (1996) [INSPIRE].
[12] Abdesselam, A.; etal., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J., C 71, 1661, (2011)
[13] Dasgupta, M.; Salam, GP, Resummation of nonglobal QCD observables, Phys. Lett., B 512, 323, (2001)
[14] Catani, S.; Trentadue, L.; Turnock, G.; Webber, B., Resummation of large logarithms in e\^{}{+}e\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[15] Banfi, A.; Salam, GP; Zanderighi, G., Semi-numerical resummation of event shapes, JHEP, 01, 018, (2002)
[16] Banfi, A.; Salam, GP; Zanderighi, G., Phenomenology of event shapes at hadron colliders, JHEP, 06, 038, (2010)
[17] Florian, D.; Grazzini, M., The back-to-back region in e\^{}{+}e\^{}{−} energy-energy correlation, Nucl. Phys., B 704, 387, (2005)
[18] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[19] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in e\^{}{+}e\^{}{−} annihilation, JHEP, 12, 094, (2007)
[20] Monni, PF; Gehrmann, T.; Luisoni, G., Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP, 08, 010, (2011)
[21] Bauer, CW; Fleming, S.; Pirjol, D.; Stewart, IW, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev., D 63, 114020, (2001)
[22] Bauer, CW; Pirjol, D.; Stewart, IW, Soft collinear factorization in effective field theory, Phys. Rev., D 65, 054022, (2002)
[23] Chien, Y-T; Schwartz, MD, Resummation of heavy jet mass and comparison to LEP data, JHEP, 08, 058, (2010)
[24] R. Abbate, M. Fickinger, A. Hoang, V. Mateu and I.W. Stewart, Global fit of α_{\(s\)}(\(m\)_{\(Z\)}) to thrust at NNNLL order with power corrections, PoS(RADCOR2009)040 [arXiv:1004.4894] [INSPIRE].
[25] Cacciari, M.; Salam, GP, Dispelling the N\^{}{3} myth for the k_{t} jet-finder, Phys. Lett., B 641, 57, (2006)
[26] Cacciari, M.; Salam, GP; Soyez, G., The anti-k_{t} jet clustering algorithm, JHEP, 04, 063, (2008)
[27] Kelley, R.; Schwartz, MD, Threshold hadronic event shapes with effective field theory, Phys. Rev., D 83, 033001, (2011)
[28] Ellis, SD; Soper, DE, Successive combination jet algorithm for hadron collisions, Phys. Rev., D 48, 3160, (1993)
[29] Catani, S.; Seymour, MH, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett., B 378, 287, (1996)
[30] Becher, T.; Schwartz, MD, A precise determination of α_{s} from LEP thrust data using effective field theory, JHEP, 07, 034, (2008)
[31] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett., 99, 132002, (2007)
[32] Oderda, G.; Sterman, GF, Energy and color flow in dijet rapidity gaps, Phys. Rev. Lett., 81, 3591, (1998)
[33] Dasgupta, M.; Salam, GP, Accounting for coherence in interjet E(t) flow: a case study, JHEP, 03, 017, (2002)
[34] Appleby, R.; Seymour, MH, Nonglobal logarithms in interjet energy flow with k_{t} clustering requirement, JHEP, 12, 063, (2002)
[35] Banfi, A.; Dasgupta, M., Problems in resumming interjet energy flows with k_{t} clustering, Phys. Lett., B 628, 49, (2005)
[36] Collins, JC; Soper, DE; Sterman, GF, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys., B 250, 199, (1985)
[37] Bonciani, R.; Catani, S.; Mangano, ML; Nason, P., Sudakov resummation of multiparton QCD cross-sections, Phys. Lett., B 575, 268, (2003)
[38] Banfi, A.; Marchesini, G.; Smye, G., Away from jet energy flow, JHEP, 08, 006, (2002)
[39] Kelley, R.; Schwartz, MD; Schabinger, RM; Zhu, HX, The two-loop hemisphere soft function, Phys. Rev., D 84, 045022, (2011)
[40] Hornig, A.; Lee, C.; Stewart, IW; Walsh, JR; Zuberi, S., Non-global structure of the O(\( α_s^2 \)) dijet soft function, JHEP, 08, 054, (2011)
[41] Delenda, Y.; Appleby, R.; Dasgupta, M.; Banfi, A., On QCD resummation with k_{t} clustering, JHEP, 12, 044, (2006)
[42] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, arXiv:1111.6097 [INSPIRE].
[43] Salam, GP; Soyez, G., A practical seedless infrared-safe cone jet algorithm, JHEP, 05, 086, (2007)
[44] Appelquist, T.; Georgi, H., E\^{}{+}e\^{}{−} annihilation in gauge theories of strong interactions, Phys. Rev., D 8, 4000, (1973)
[45] http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog2/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.