×

zbMATH — the first resource for mathematics

Localized edge states in the asymptotic suction boundary layer. (English) Zbl 1284.76106
Summary: The dynamics on the laminar-turbulent separatrix is investigated numerically for boundary-layer flows in the subcritical regime. Constant homogeneous suction is applied at the wall, resulting in a parallel asymptotic suction boundary layer (ASBL). When the numerical domain is sufficiently extended in the spanwise direction, the coherent structures found by edge tracking are invariably localized, and their dynamics shows bursts that drive a remarkable regular or irregular spanwise dynamics. Depending on the parameters, the asymptotic dynamics on the edge can be either periodic in time or chaotic. A clear mechanism for the regeneration of streaks and streamwise vortices emerges in all cases and is investigated in detail.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76F06 Transition to turbulence
Software:
SIMSON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[2] So, Near-Wall Turbulent Flows pp 347– (1993)
[3] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014 · doi:10.1017/S0022112003003768
[4] DOI: 10.1017/S0022112087001253 · doi:10.1017/S0022112087001253
[5] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[6] DOI: 10.1103/PhysRevLett.96.174101 · doi:10.1103/PhysRevLett.96.174101
[7] DOI: 10.1017/S0022112009993144 · Zbl 1189.76258 · doi:10.1017/S0022112009993144
[8] DOI: 10.1103/PhysRevE.78.037301 · doi:10.1103/PhysRevE.78.037301
[9] DOI: 10.1103/PhysRevLett.99.034502 · doi:10.1103/PhysRevLett.99.034502
[10] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[11] DOI: 10.1063/1.1825451 · Zbl 1187.76248 · doi:10.1063/1.1825451
[12] J. Fluid Mech. 332 pp 185– (1997) · Zbl 0892.76036 · doi:10.1017/S0022112096003965
[13] DOI: 10.1017/S0022112010003435 · Zbl 1205.76126 · doi:10.1017/S0022112010003435
[14] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[15] J. Fluid Mech. 613 pp 255– (2008)
[16] DOI: 10.1143/JPSJ.70.703 · doi:10.1143/JPSJ.70.703
[17] DOI: 10.1103/PhysRevLett.108.044501 · doi:10.1103/PhysRevLett.108.044501
[18] DOI: 10.1093/qjmam/28.3.341 · Zbl 0321.76021 · doi:10.1093/qjmam/28.3.341
[19] DOI: 10.1063/1.3265962 · Zbl 1183.76187 · doi:10.1063/1.3265962
[20] DOI: 10.1063/1.866067 · doi:10.1063/1.866067
[21] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[22] DOI: 10.1063/1.3589842 · Zbl 06422370 · doi:10.1063/1.3589842
[23] DOI: 10.1017/S0022112003003926 · Zbl 1049.76508 · doi:10.1017/S0022112003003926
[24] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[25] DOI: 10.1063/1.3696303 · Zbl 06424287 · doi:10.1063/1.3696303
[26] DOI: 10.1017/S0022112088001296 · doi:10.1017/S0022112088001296
[27] Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[28] Boundary-Layer Theory (1987)
[29] DOI: 10.1088/1742-6596/318/2/022020 · doi:10.1088/1742-6596/318/2/022020
[30] DOI: 10.1063/1.3005836 · Zbl 1182.76669 · doi:10.1063/1.3005836
[31] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[32] DOI: 10.1103/PhysRevLett.103.054502 · doi:10.1103/PhysRevLett.103.054502
[33] DOI: 10.1017/S0022112007006544 · Zbl 1123.76023 · doi:10.1017/S0022112007006544
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.