×

Domain decomposition methods in science and engineering. XIV. Papers from the 14th international conference on domain decomposition methods, Cocoyoc, México, January 6–12, 2002. (English) Zbl 1103.65004

México: National Autonomous University of México (UNAM) (ISBN 82-994951-1-3). xiv, 490, electronic. (2003).
Contents: A. A. Aldama, Nonlinearity, numerics and propagation of information (3–14); S.Bertoluzza, Non conforming domain decomposition: the Steklov-Poincaré operator point of view (15–26); M. Dryja and O. B. Widlund, A generalized FETI-DP method for a mortar discretization of elliptic problems (27–38); W.Hackbusch, Direct domain decomposition using the hierarchical matrix technique (39–50); I.Herrera, R. Yates and M. A. Diaz, The indirect approach to domain decomposition (51–62); M. Holst, Application of domain decomposition and partition of unity methods in physics and geometry (63–78); D. E.Keyes, Domain decomposition in the mainstream of computational science (79–94); S. H. Lui, Nonlinearly preconditioned Newton’s method (95–105); Jan Mandel, Iterative substructuring with Lagrange multipliers for coupled fluid-solid scattering (107–117); T.-W. Pan, R. Glowinski, D. D. Joseph and R. Bai, Direct simulation of the motion of settling ellipsoids in Newtonian fluid (119–129); Éric Peirano and Denis Talay, Domain decomposition by stochastic methods (131–147); M. Sarkis, Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity (149–158); S. J. Sherwin and J. Peiró, Algorithms and arteries: multi-domain spectral/\(hp\) methods for vascular flow modelling (159–170); W. L. Wan and T. F. Chan, Wave propagation analysis of multigrid methods for convection dominated problems (171–181); L. H. Juárez and R. Glowinski, Numerical simulation of the motion of pendula in an incompressible viscous fluid by Lagrange multiplier/fictitious domain methods (185–192); M. K. Bhardwajand D. M. Day, Modifications to graph partitioning tools for use with FETI methods (195–202); Pavel Bochev and R. B.Lehoucq, Regularized formulations of FETI (203–208); P.Goldfeld, Balancing Neumann-Neumann for (in)compressible linear elasticity and (generalized) Stokes – parallel implementation (209–216); M. Lesoinne, A FETI-DP corner selection algorithm for three-dimensional problems (217–223); Jing Li, A dual-primal FETI method for solving Stokes/Navier-Stokes equations (225–231); K. H. Pierson, G. M.Reese and P. Raghavan, Experiences with FETI-DP in a production level finite element application (233–240); I. Herrera, Unified theory of domain decomposition methods (243–248); M. A. Diaz, I. Herrera and R. Yates, Indirect method of collocation: 2nd order elliptic equations (249–255); M.Dryja and W. Proskurowski, Dual preconditioners for mortar discretization of elliptic problems (257–263); F. García-Nocetti, I. Herrera, E. Rubio, R.Yates and L. Ochoa, The direct approach to domain decomposition methods (265–271); R. Yates and I. Herrera, Parallel implementation of collocation methods (273–278); M. J. Gander and G. H. Golub, A non-overlapping optimized Schwarz method which converges with arbitrarily weak dependence on \(h\) (281–288); M. Genseberger, G. L. G. Sleijpen and H. A.van der Vorst, An optimized Schwarz method in the Jacobi-Davidson method for eigenvalue problems (289–296); François-Xavier Roux, Frédéric Magoulès, Stéphanie Salmon and Laurent Series, Optimization of interface operator based on algebraic approach (297–304); R. Kornhuber and R. Krause, On multigrid methods for vector-valued Allen-Cahn equations with obstacle potential (307–314); Young-Ju Lee, Jinchao Xu and Ludmil Zikatanov, Successive subspace correction method for singular system of equations (315–321); Xue-Cheng Tai, Some new domain decomposition and multigrid methods for variational inequalities (323–330); J.Aparicio, A. A. Aldama and H. Rubio, Flow in complex river networks simulation through a domain decomposition method (333–340); J. Baranger, M. Garbey and F. Oudin-Dardun, On Aitken like acceleration of Schwarz domain decomposition method using generalized Fourier (341–348); N. Barberou, M. Garbey, M. Hess, M. Resch, T. Rossi, J. Toivanen and D. Tromeur-Dervout, An Aitken-Schwarz method for efficient metacomputing of elliptic equations (349–356); S. Bertoluzza and S. Falletta, The mortar method with approximate constraint (357–363); A. S. Char ao, I. Charpentier, B.Plateau and B. Stein, Generic parallel multithreaded programming of domain decomposition methods on PC clusters (365–372); J.-M. Cros, A preconditioner for the Schur complement domain decomposition method (373–380); H. De Gersem, S.Vandewalle, M. Clemens and T. Weiland, Interface preconditioners for splitting interface conditions in air gaps of electrical machine models (381–388); M. A. Diaz and I. Herrera, Indirect method of collocation for the biharmonic equation (389–394); Zdeněk Dostál, David Horák and OldřichVlach, Toward scalable FETI algorithm for variational inequalities with applications to composites (395–402); M. Garbeyand W. Shyy, Error estimation, multilevel method and robust extrapolation in the numerical solution of PDEs (403–410); L. Gerardo Giorda, P. Le Tallec and F. Nataf, A Robin-Robin preconditioner for strongly heterogeneous advection-diffusion problems (411–418); P. Gosselet and C. Rey, On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity (419–426); Bernhard Hientzsch, Fast solvers and Schwarz preconditioners for spectral Nédélec elements for a model problem in \(H(\text{curl})\) (427–433); G. Houzeaux and R. Codina, A Dirichlet/Robin iteration-by-subdomain domain decomposition method applied to advection-diffusion problems for overlapping subdomains (435–442); S. Kanaun and V. M. Romero, Boundary point method in the dynamic and static problems of mathematical physics (443–450); D. Y. Kwak, \(V\)-cycle multigrid convergence for cell centered finite difference method, 3-D case (451–457); E. Laitinen, A. Lapin and J. Pieskä, Asynchronous domain decomposition methods for solving continuous casting problem (459–466 ); T. Sassi, A domain decomposition algorithm for nonlinear interface problem (467–474); Xuemin Tu and MarcusSarkis, Singular function enhanced mortar finite element (475–482); V. G. Tzatchkov, A. A.Aldama and F. I. Arreguin, A domain decomposition strategy for the numerical simulation of contaminant transport in pipe networks (483–490).
The articles of this volume will not be indexed individually.

MSC:

65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
00B25 Proceedings of conferences of miscellaneous specific interest
PDFBibTeX XMLCite